Similarly, the aggregated multi-temporal approach
proposed to reduce the variability of the images led to
high-accuracy classification. Selecting a limited
period for the satellite classification allowed the
maximisation of the seasonal characterisation. It
increased the separability of some hard-to-map
classes (e.g. Nigerienne urban areas from bare soils
and pastures and water).
5 CONCLUSIONS
Regardless of the application of atmospheric
correction, the classification provides a suitable LC
map for flood planning. It follows that, with some
specific actions, it is possible to overcome the main
mapping difficulties and obtain LC maps with high
thematic detail in sub-Saharan areas. The model
proposed in this paper can be applied to classify other
sub-Saharan river areas semi-automatically since it is
developed in GEE.
REFERENCES
Anadia 2.0. climateservices.it CNR-IBE. URL https://clima
teservices.it/progetto/anadia/ (accessed 2.8.23).
Belcore, E., Piras, M., Pezzoli, A., 2022. Land Cover
Classification from Very High-Resolution UAS Data
for Flood Risk Mapping. Sensors 22, 5622. https://
doi.org/10.3390/s22155622
Belcore, E., Piras, M., Wozniak, E., 2020. Specific alpine
environment land cover classification methodology:
Google Earth Engine processing for Sentinel-2 data, in:
Volume XLIII-B3-2020. Copernicus Publications, pp.
663–670. https://doi.org/10.5194/isprs-archives-XLIII-
B3-2020-663-2020
Bigi, V., Pezzoli, A., Rosso, M., 2018. Past and Future
Precipitation Trend Analysis for the City of Niamey
(Niger): An Overview. Climate 6, 73. https://doi.org/
10.3390/cli6030073
Breiman, L., 2001. Random Forests. Machine Learning 45,
5–32. https://doi.org/10.1023/A:1010933404324
Chavez, P.S., 1988. An improved dark-object subtraction
technique for atmospheric scattering correction of
multispectral data. Remote Sensing of Environment 24,
459–479.https://doi.org/10.1016/0034-4257(88)90019-3
Congalton, R.G., 1991. A review of assessing the accuracy
of classifications of remotely sensed data. Remote
Sensing of Environment 37, 35–46. https://doi.org/
10.1016/0034-4257(91)90048-B
Conners, R. W., Trivedi, M.M., Harlow, C.A., 1984.
Segmentation of a high-resolution urban scene using
texture operators. Computer Vision, Graphics, and
Image Processing 25, 273–310. https://doi.org/
10.1016/0734-189X(84)90197-X
Dorren, L.K.A., Maier, B., Seijmonsbergen, A.C., 2003.
Improved Landsat-based forest mapping in steep
mountainous terrain using object-based classification.
Forest Ecology and Management 183, 31–46.
https://doi.org/10.1016/S0378-1127(03)00113-0
Drzewiecki, W., Wawrzaszek, A., Aleksandrowicz, S.,
Krupiński, M., Bernat, K., 2013. Comparison of
selected textural features as global content-based
descriptors of VHR satellite image, in: 2013 IEEE
International Geoscience and Remote Sensing
Symposium - IGARSS. Presented at the 2013 IEEE
International Geoscience and Remote Sensing
Symposium - IGARSS, pp. 4364–4366. https://doi.org/
10.1109/IGARSS.2013.6723801
ESA, 2016. ESA CCI LAND COVER – S2 prototype Land
Cover 20m map of Africa 2016 [WWW Document].
URL http://2016africalandcover20m.esrin.esa.int/
(accessed 4.12.21).
GEE, n.d. Google Earth Engine [WWW Document]. URL
https://earthengine.google.com/platform/ (accessed
3.9.20).
Haralick, R.M., Shanmugam, K., Dinstein, I., 1973.
Textural Features for Image Classification. IEEE
Transactions on Systems, Man, and Cybernetics SMC-
3, 610–621. https://doi.org/10.1109/TSMC.1973.
4309314
Huete, A. R., 1988. A soil-adjusted vegetation index
(SAVI). Remote Sensing of Environment 25, 295–309.
https://doi.org/10.1016/0034-4257(88)90106-X
Kukawska, E., Lewiński, S., Krupiński, M., Malinowski,
R., Nowakowski, A., Rybicki, M., Kotarba, A., 2017.
Multitemporal Sentinel-2 data - remarks and
observations, in: 2017 9th International Workshop on
the Analysis of Multitemporal Remote Sensing Images
(MultiTemp). Presented at the 2017 9th International
Workshop on the Analysis of Multitemporal Remote
Sensing Images (MultiTemp), pp. 1–4. https://doi.org/
10.1109/Multi-Temp.2017.8035212
Lantzanakis, G., Mitraka, Z., Chrysoulakis, N., 2017.
Comparison of Physically and Image Based
Atmospheric Correction Methods for Sentinel-2
Satellite Imagery, in: Karacostas, T., Bais, A., Nastos,
P.T. (Eds.), Perspectives on Atmospheric Sciences,
Springer Atmospheric Sciences. Springer International
Publishing, pp. 255–261.
Li, Q., Qiu, C., Ma, L., Schmitt, M., Zhu, X.X., 2020.
Mapping the Land Cover of Africa at 10 m Resolution
from Multi-Source Remote Sensing Data with Google
Earth Engine. Remote Sensing 12, 602. https://doi.
org/10.3390/rs12040602
Massazza, G., Tamagnone, P., Pezzoli, A., Housseini, M.,
Belcore, E., Tiepolo, M., Rosso, M., 2018. Amélio-
rations sur le système d’observation du bassin de la
Rivière Sirba pour la gestion des risques naturels, in:
Colloque International AMMA-CATCH. AMMA
CATCH.
Massazza, G., Tamagnone, P., Wilcox, C., Belcore, E.,
Pezzoli, A., Vischel, T., Panthou, G., Housseini
Ibrahim, M., Tiepolo, M., Tarchiani, V., Rosso, M.,
2019. Flood Hazard Scenarios of the Sirba River