framework for deformable medical image registration.
IEEE Transactions on Medical Imaging, 38:1788–
1800.
Besl, P. J. and McKay, N. D. (1992). A method for registra-
tion of 3-d shapes. IEEE Trans. Pattern Anal. Mach.
Intell., 14:239–256.
Bouaziz, S., Tagliasacchi, A., and Pauly, M. (2013). Sparse
iterative closest point. Computer Graphics Forum, 32.
Bronstein, A. M., Bronstein, M. M., and Kimmel, R.
(2006). Efficient computation of isometry-invariant
distances between surfaces. SIAM J. Sci. Comput.,
28:1812–1836.
Bronstein, A. M., Bronstein, M. M., and Kimmel, R.
(2007). Calculus of nonrigid surfaces for geometry
and texture manipulation. IEEE Transactions on Visu-
alization and Computer Graphics, 13:902–913.
Chen, Y. and Medioni, G. (1991). Object modeling by reg-
istration of multiple range images. Proceedings. 1991
IEEE International Conference on Robotics and Au-
tomation, pages 2724–2729 vol.3.
Dai, Z., Yu, H., Low, K. H., and Jaillet, P. (2019). Bayesian
optimization meets bayesian optimal stopping. In
ICML.
Fischl, B. R. (2012). Freesurfer. NeuroImage, 62:774–781.
Fong, E. and Holmes, C. C. (2021). Conformal bayesian
computation. In NeurIPS.
Garc
´
ıa, H.,
´
Alvarez, M. A., and Orozco,
´
A. (2016).
Bayesian optimization for fitting 3d morphable mod-
els of brain structures. In CIARP.
Guti
´
errez-Becker, B. and Wachinger, C. (2018). Deep
multi-structural shape analysis: Application to neu-
roanatomy. In MICCAI.
Jaffray, D. A., Kupelian, P. A., Djemil, T., and Macklis,
R. (2007). Review of image-guided radiation therapy.
Expert Review of Anticancer Therapy, 7:103 – 89.
Jones, D. R. (2001). A taxonomy of global optimiza-
tion methods based on response surfaces. Journal of
Global Optimization, 21:345–383.
Krebs, J., Delingette, H., Mailh
´
e, B., Ayache, N., and
Mansi, T. (2019). Learning a probabilistic model
for diffeomorphic registration. IEEE Transactions on
Medical Imaging, 38:2165–2176.
Lau, T. F., Luo, J., Zhao, S., Chang, E., and Xu, Y. (2020).
Unsupervised 3d end-to-end medical image registra-
tion with volume tweening network. IEEE Journal of
Biomedical and Health Informatics, 24:1394–1404.
Li, J., Hu, Q., Zhang, Y., and Ai, M. (2022). Robust sym-
metric iterative closest point. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 185:219–231.
Liu, J., Zhu, J., Yang, J., Meng, X., and Zhang, H. (2016).
Three-dimensional point cloud registration based on
icp algorithm employing k-d tree optimization. In In-
ternational Conference on Digital Image Processing.
Mansilla, L., Milone, D. H., and Ferrante, E. (2020). Learn-
ing deformable registration of medical images with
anatomical constraints. Neural networks : the official
journal of the International Neural Network Society,
124:269–279.
Miller, S. P., Ramaswamy, V., Michelson, D. J., Barkovich,
A. J., Holshouser, B. A., Wycliffe, N., Glidden, D. V.,
Deming, D. D., Partridge, J. C., Wu, Y. W., Ashwal,
S., and Ferriero, D. M. (2005). Patterns of brain in-
jury in term neonatal encephalopathy. The Journal of
pediatrics, 146 4:453–60.
Oliveira, F. P. M. and Tavares, J. (2014). Medical image
registration: a review. Computer Methods in Biome-
chanics and Biomedical Engineering, 17:73 – 93.
Oomori, S., Nishida, T., and Kurogi, S. (2016). Point cloud
matching using singular value decomposition. Artifi-
cial Life and Robotics, 21:149–154.
Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian
Processes for Machine Learning (Adaptive Computa-
tion and Machine Learning). The MIT Press.
Rusinkiewicz, M. L. (2001). Efficient variants of the icp
algorithm. Proc. 3rd Int. Conf. 3D Digital Imaging
and Modeling, pages 145–152.
Sadozye, A. H. and Reed, N. S. (2012). A review of re-
cent developments in image-guided radiation therapy
in cervix cancer. Current Oncology Reports, 14:519–
526.
Satheesan, A. P., Chinnappa, A. R., Goudar, G., and
Raghoji, C. R. (2020). Correlation between early mag-
netic resonance imaging brain abnormalities in term
infants with perinatal asphyxia and neuro develop-
mental outcome at one year. International Journal of
Contemporary Pediatrics.
Snoek, J., Larochelle, H., and Adams, R. P. (2012). Prac-
tical bayesian optimization of machine learning algo-
rithms. In Pereira, F., Burges, C. J. C., Bottou, L., and
Weinberger, K. Q., editors, Advances in Neural In-
formation Processing Systems 25, pages 2951–2959.
Curran Associates, Inc.
Stanton, S., Maddox, W. J., and Wilson, A. G. (2022).
Bayesian optimization with conformal coverage guar-
antees. ArXiv, abs/2210.12496.
Umeyama, S. (1991). Least-squares estimation of transfor-
mation parameters between two point patterns. IEEE
Trans. Pattern Anal. Mach. Intell., 13:376–380.
Vos, B. D., Berendsen, F., Viergever, M., Sokooti, H., Star-
ing, M., and Isgum, I. (2019). A deep learning frame-
work for unsupervised affine and deformable image
registration. Medical Image Analysis, 52:12X143.
Wang, L., Gao, X., Zhou, Z., and Wang, X. (2014). Eval-
uation of four similarity measures for 2d/3d registra-
tion in image-guided intervention. Journal of Medical
Imaging and Health Informatics, 4:416–421.
Williams, J. L. and Maybeck, P. (2006). Cost-function-
based hypothesis control techniques for multiple hy-
pothesis tracking. Math. Comput. Model., 43:976–
989.
Zhang, J., Yao, Y., and Deng, B. (2022). Fast and robust
iterative closest point. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44:3450–3466.
Zhang, P. (2015). Evaluating accuracy of community detec-
tion using the relative normalized mutual information.
In Journal of Statistical Mechanics: Theory and Ex-
periment.
Zhang, Z. (2005). Iterative point matching for registration
of free-form curves and surfaces. International Jour-
nal of Computer Vision, 13:119–152.
Zhao, S., Dong, Y., Chang, E., and Xu, Y. (2019). Recur-
sive cascaded networks for unsupervised medical im-
age registration. 2019 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 10599–
10609.
Bayesian Iterative Closest Point for Shape Analysis of Brain Structures
925