businesses and public offices, Engineering
Proceedings, 2, 1, 1-6.
Dong, Y., Yao. Y.-D. (2021). IoT platform for covid-19
prevention and control: A survey, IEEE Access, vol. 9,
pp. 49929–49941, doi: 10.1109/ACCESS.2021
.3068276.
Duda, O., N. Kunanets, S. Martsenko, V. Nykytyuk, and V.
Pasichnyk (2021). Information technology platform for
the selection and analytical processing of information
on COVID-19, in International Scientific and Technical
Conference on Computer Sciences and Information
Technologies, vol. 2, pp. 231–238, doi:
10.1109/CSIT52700.2021.9648839.
Eykelbosh, A. (2021). Indoor CO
2
Sensors for COVID-19
Risk Mitigation: Current Guidance and Limitations,
Vancouver, BC: National Collaborating Centre for
Environmental Health.
Healthline (2022). The Simple Science Behind Why Masks
Work, https://www.healthline.com/health-news/the-
simple-science-behind-why-masks-work, last accessed
04/03/2022
Koh, D. (2020). Migrant workers and COVID-19,
Occupational and Environmental Medicine (9), pp.
634-636.
Margherita, A., Heikkilä, M. (2021). Business Continuity
in the COVID-19 Emergency: A Framework of Actions
Undertaken by World-Leading Companies, Business
Horizons, Volume 64, Issue 5, pp. 683-695.
Meenpal, T., Balakrishnan, A., Verma, A.. (2020). Facial
Mask Detection using Semantic Segmentation, ICCCS
Proceedings, pp. 1-5.
Mumtaz, R., Zaudum S.M.H., Shakir, M., Z., Shafi, U. et
al. (2021) Internet of things (Iot) based indoor air
quality sensing and predictive analytic—a covid-19
perspective, Electron., vol. 10, no. 2, pp. 1–26, doi:
10.3390/electronics10020184.
Otoom, M., Otoum, N.; Alzubaidi, M.A.; Etoom, Y.;
Banihani, R. (2020). An IoT-based framework for early
identification and monitoring of COVID-19 cases,
Biomedical Signal Processing and Control, Volume 62.
Patrizi, N., Tsiropoulou, E. E. and S. Papavassiliou, S.
(2021). Health Data Acquisition from Wearable
Devices during a Pandemic: A Techno-Economics
Approach, ICC 2021 - IEEE International Conference
on Communications, pp. 1-6, doi:
10.1109/ICC42927.2021.9500700.
Petrovic, N., Kocić, D. (2020). IoT-based System for
COVID-19 Indoor Safety Monitoring, IcETRAN
Proceedings.
Peladarinos, N., Cheimaras, V., Piromalis, D., Arvanitis,
K.G., Papageorgas, P., Monios, N., Dogas, I.,
Stojmenovic, M. & Tsaramirsis, G. (2021). Early
warning systems for COVID-19 infections based on
low-cost indoor air-quality sensors and LPWANs,
Sensors, vol. 21, no. 18.
Shaw, J. Day, T., Malik, N., Barber, N., Wickenheiser, H.,
Fisman, D.N., Bogoch, I., Brownstein, J.I., Williamson,
T. (2020). Working in a bubble: How can businesses
reopen while limiting the risk of COVID-19
outbreaks?, CMAJ, vol. 192, no. 44, pp. E1362-E1366.
Shinde, R. K , Alam, M. S., Park, S. G., Park, S. M. and
Kim, N. (2022). Intelligent IoT (IIoT) Device to
Identifying Suspected COVID-19 Infections Using
Sensor Fusion Algorithm and Real-Time Mask
Detection Based on the Enhanced MobileNetV2 Model,
Health., vol. 10, no. 3, doi: 10.3390/healthcare1
0030454.
Wang, Z., Wang, G., Huang, B., Xiong, Z., Hong, Q., Wu,
H., Yi, P., Jiang, K., Wang, N., Pei, Y., Chen, H., Miao,
Y., Huang, Z., and Liang, J. (2020). Masked Face
Recognition Dataset and Application, arXiv [preprint],
https://arxiv.org/abs/2003.09093.
WHO (2022). World Health Organization Homepage,
https://www.who.int/publications/i/item/WHO-2019-
nCoV-workplace-actions-policy-brief-2021-1, last
accessed 07/03/2022
Yang, C., W. Wang, F. Li, and D. Yang (2022). An IoT-
Based COVID-19 Prevention and Control System for
Enclosed Spaces, Futur. Internet, vol. 14, no. 2, doi:
10.3390/fi14020040.
Zhu, Y., Oishi, W., Mauro, C., Siao, M., Chen, R., Kitajima,
M., Sano, D. (2021). Early warning of COVID-19 via
wastewater-based epidemiology: potential and
bottlenecks, Sci. Total Environ., vol. 767, doi:
10.1016/j.scitotenv.2021.145124.