Management, 304, 114158. doi:https://doi.org/10.1016/
j.jenvman.2021.114158
Blanco, M. N., Gassett, A., Gould, T., Doubleday, A.,
Slager, D. L., Austin, E., Sheppard, L. (2022).
Characterization of Annual Average Traffic-Related
Air Pollution Concentrations in the Greater Seattle Area
from a Year-Long Mobile Monitoring Campaign.
Environmental Science & Technology, 56(16), 11460-
11472. doi:10.1021/acs.est.2c01077
Center for Advancing Research in Transportation
Emissions, Energy, and Health. (2019). Measuring
Temporal and Spatial Exposure of Urban Cyclists to
Air Pollutants Using an Instrumented Bike (Report No.
GT-01-09). Retrieved from https://rosap.ntl.bts.gov/
view/dot/56809
Das, P., Ghosh, S., Chatterjee, S., & De, S. (2022). A Low
Cost Outdoor Air Pollution Monitoring Device With
Power Controlled Built-In PM Sensor. IEEE Sensors
Journal, 22(13), 13682-13695. doi:10.1109/jsen.
2022.3175821
deSouza, P., Lu, R., Kinney, P., & Zheng, S. (2021).
Exposures to multiple air pollutants while commuting:
Evidence from Zhengzhou, China. Atmospheric
Environment, 247, 118168. doi:10.1016/j.atmosenv.
2020.118168
Dons, E., Int Panis, L., Van Poppel, M., Theunis, J., &
Wets, G. (2012). Personal exposure to Black Carbon in
transport microenvironments. Atmospheric Environ-
ment, 55, 392-398. doi:10.1016/j.atmosenv.2012.
03.020
Fuller, R., Landrigan, P. J., Balakrishnan, K., Bathan, G.,
Bose-O'Reilly, S., Brauer, M., Yan, C. (2022).
Pollution and health: a progress update. The Lancet
Planetary Health, 6(6), e535–e547. doi: https://
doi.org/10.1016/S2542-5196(22)00090-0
HabitatMap. (2022). AirBeam3 Technical Specifications,
Operation & Performance. Retrieved from https://
www.habitatmap.org/blog/airbeam3-technical-specifi
cations-operation-performance
Haghbayan, S., & Tashayo, B. (2021). Integrating ground-
based air quality monitoring stations with mobile sensor
units to improve the accuracy of PM
2.5
concentration
modeling. Scientific - Research Quarterly of
Geographical Data (SEPEHR), 29(116), 45-58.
doi:10.22131/sepehr.2021.242859
Han, Y., Chatzidiakou, L., Yan, L., Chen, W., Zhang, H.,
Krause, A., . . . Kelly, F. J. (2021). Difference in
ambient-personal exposure to PM
2.5
and its
inflammatory effect in local residents in urban and peri-
urban Beijing, China: results of the AIRLESS project.
Faraday Discussions, 226, 569-583. doi:10.1039
/d0fd00097c
Huang, J., Kwan, M. P., Cai, J., Song, W., Yu, C., Kan, Z.,
& Yim, S. H. (2022). Field Evaluation and Calibration
of Low-Cost Air Pollution Sensors for Environmental
Exposure Research. Sensors (Basel), 22(6), 2381. doi:
https://doi.org/10.3390/s22062381
METEO FRANCE, Institut National de l'Environnement
Industriel et des Risques (Ineris), Aarhus University,
Norwegian Meteorological Institute (MET Norway),
Jülich Institut für Energie- und Klimaforschung (IEK),
Institute of Environmental Protection – National
Research Institute (IEP-NRI), Koninklijk Nederlands
Meteorologisch Instituut (KNMI), Nederlandse
Organisatie voor toegepast-natuurwetenschappelijk
onderzoek (TNO), Swedish Meteorological and
Hydrological Institute (SMHI), Finnish Meteorological
Institute (FMI). (2020). CAMS European air quality
forecasts, ENSEMBLE data. Copernicus Atmosphere
Monitoring Service (CAMS) Atmosphere Data Store
(ADS). [dataset]. Retrieved from: https://ads.atmo
sphere.copernicus.eu/cdsapp#!/dataset/cams-europe-
air-quality-forecasts?tab=overview
Motlagh, N. H., Zaidan, M. A., Fung, P. L., Lagerspetz, E.,
Aula, K., Varjonen, S., Tarkoma, S. (2021). Transit
pollution exposure monitoring using low-cost wearable
sensors. Transportation Research Part D: Transport
and Environment, 98. doi:10.1016/j.trd.2021.102981
Muresan, B., & François, D. (2018). Air quality in tramway
and high-level service buses: A mixed
experimental/modeling approach to estimating users'
exposure. Transportation Research Part D: Transport
and Environment, 65, 244-263. doi:10.1016/j.trd.
2018.09.005
Peng, L., Shen, Y., Gao, W., Zhou, J., Pan, L., Kan, H., &
Cai, J. (2021). Personal exposure to PM
2.5
in five
commuting modes under hazy and non-hazy conditions.
Environmental Pollution, 289, 117823. doi:10.
1016/j.envpol.2021.117823
Pryor, J. T., Cowley, L. O., & Simonds, S. E. (2022). The
Physiological Effects of Air Pollution: Particulate
Matter, Physiology and Disease. Frontiers in Public
Health, 10, 882569. doi:10.3389/fpubh.2022.882569
Qiu, Z., & Cao, H. (2020). Commuter exposure to
particulate matter in urban public transportation of
Xi'an, China. Journal of Environmental Health Science
and Engineering, 18(2), 451-462. doi:10.1007/s40201-
020-00473-0
R Core Team. (2022). R: A language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. Retrieved from: https://
www.R-project.org/
Réseau d'Observation Météo du Massif Alpin. (2022).
Données Station de Saint-Martin-d’Hères [Members
dataset]. Retrieved from: https://romma.fr/
Schmitz, S., Towers, S., Villena, G., Caseiro, A., Wegener,
R., Klemp, D., Von Schneidemesser, E. (2021).
Unravelling a black box: An open-source methodology
for the field calibration of small air quality sensors.
Atmospheric Measurement Techniques, 4, 7221–7241.
doi: https://doi.org/10.5194/amt-2020-489
Shen, J., & Gao, Z. (2019). Commuter exposure to
particulate matters in four common transportation
modes in Nanjing. Building and Environment, 156,
156-170. doi:10.1016/j.buildenv.2019.04.018
South Coast Air Quality Management District. (2018).
Field Evaluation - AirBeam2 PM Sensor, AQ-SPEC.
Retrieved from http://www.aqmd.gov/docs/default-
source/aq-spec/summary/habitatmap-airbeam2---sum
mary-report.pdf?sfvrsn=16