Future work will investigate the software perfor-
mance evaluation to establish the processing and stor-
age hardware requirements for edge computing archi-
tecture. Further aspects of this approach, such as in-
tegration with the process control system, depend on
the evolution of future steps mentioned.
ACKNOWLEDGMENTS
The authors would like to thank CAPES, Fapemig,
CNPq, and the Federal University of Ouro Preto for
supporting this work. Also, the authors would like to
thank Vale S/A for enabling the creation of a dataset
with real images.
This study was financed in part by the
Coordenac¸
˜
ao de Aperfeic¸oamento de Pessoal de
N
´
ıvel Superior - Brasil (CAPES) - Finance Code
001, the Conselho Nacional de Desenvolvimento
Cient
´
ıfico e Tecnol
´
ogico (CNPQ), the Instituto
Tecnol
´
ogico Vale (ITV) and the Universidade Federal
de Ouro Preto (UFOP).
REFERENCES
Al-Thyabat, S., Miles, N., and Koh, T. (2007). Estimation
of the size distribution of particles moving on a con-
veyor belt. Minerals Engineering, 20(1):72–83.
Allen, T. (2013). Particle size measurement. Springer.
Bamford, T., Esmaeili, K., and Schoellig, A. P. (2021). A
deep learning approach for rock fragmentation anal-
ysis. International Journal of Rock Mechanics and
Mining Sciences, 145:104839.
Bukharev, A., Budennyy, S., Lokhanova, O., Belozerov, B.,
and Zhukovskaya, E. (2018). The task of instance seg-
mentation of mineral grains in digital images of rock
samples (thin sections). In 2018 International Confer-
ence on Artificial Intelligence Applications and Inno-
vations (IC-AIAI), pages 18–23. IEEE.
Coetzee, L. C., Craig, I. K., and Kerrigan, E. C. (2009).
Robust nonlinear model predictive control of a run-of-
mine ore milling circuit. IEEE Transactions on con-
trol systems technology, 18(1):222–229.
de C Meira, N. F., Silva, M. C., Vieira, C. B., Souza, A.,
and Oliveira, R. A. (2022). Edge deep learning to-
wards the metallurgical industry: Improving the hy-
brid pelletized sinter (hps) process. In International
Conference on Enterprise Information Systems, pages
149–167. Springer.
Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., and
Zomaya, A. Y. (2020). Edge intelligence: The con-
fluence of edge computing and artificial intelligence.
IEEE Internet of Things Journal, 7(8):7457–7469.
Dong, L., Wang, H., Song, W., Xia, J., and Liu, T. (2021).
Deep sea nodule mineral image segmentation algo-
rithm based on mask r-cnn. In ACM Turing Award
Celebration Conference-China (ACM TURC 2021),
pages 278–284.
El Naqa, I. and Murphy, M. J. (2015). What is machine
learning? In machine learning in radiation oncology,
pages 3–11. Springer.
Frei, M. and Kruis, F. E. (2021). Fiber-cnn: Expand-
ing mask r-cnn to improve image-based fiber analysis.
Powder Technology, 377:974–991.
Girshick, R. (2015). Fast r-cnn. cite
arxiv:1504.08083Comment: To appear in ICCV
2015.
Guyot, O., Monredon, T., LaRosa, D., and Broussaud, A.
(2004). Visiorock, an integrated vision technology for
advanced control of comminution circuits. Minerals
Engineering, 17(11):1227–1235. Communition ’04.
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. (2017).
Mask r-cnn. cite arxiv:1703.06870Comment: open
source; appendix on more results.
He, K., Zhang, X., Ren, S., and Sun, J. (2015).
Deep residual learning for image recognition. cite
arxiv:1512.03385Comment: Tech report.
Huang, H., Luo, J., Tutumluer, E., Hart, J. M., and Stolba,
A. J. (2020). Automated segmentation and morpho-
logical analyses of stockpile aggregate images using
deep convolutional neural networks. Transportation
Research Record, 2674(10):285–298.
Iyas, M. R., Setiawan, N. I., and Warmada, I. W. (2020).
Mask r-cnn for rock-forming minerals identification
on petrography, case study at monterado, west kali-
mantan. In E3S Web of Conferences, volume 200,
page 06007. EDP Sciences.
Khan, W. Z., Ahmed, E., Hakak, S., Yaqoob, I., and Ahmed,
A. (2019). Edge computing: A survey. Future Gener-
ation Computer Systems, 97:219–235.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. nature, 521(7553):436–444.
Li, E., Zeng, L., Zhou, Z., and Chen, X. (2019). Edge
ai: On-demand accelerating deep neural network in-
ference via edge computing. IEEE Transactions on
Wireless Communications, 19(1):447–457.
Lin, T.-Y., Doll
´
ar, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. (2016). Feature pyramid networks
for object detection. cite arxiv:1612.03144.
Long, J., Shelhamer, E., and Darrell, T. (2014). Fully
convolutional networks for semantic segmentation.
cite arxiv:1411.4038Comment: to appear in CVPR
(2015).
Maxwell, A. E., Pourmohammadi, P., and Poyner, J. D.
(2020). Mapping the topographic features of mining-
related valley fills using mask r-cnn deep learning and
digital elevation data. Remote Sensing, 12(3):547.
McCarthy, J. (2007). What is artificial intelligence.
Okada, N., Maekawa, Y., Owada, N., Haga, K., Shibayama,
A., and Kawamura, Y. (2020). Automated identifica-
tion of mineral types and grain size using hyperspec-
tral imaging and deep learning for mineral processing.
Minerals, 10(9).
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
ICEIS 2023 - 25th International Conference on Enterprise Information Systems
322