Engineering: Emergent Issues. 2020 Fourth
International Conference on Inventive Systems and
Control (ICISC), 666–672. https://doi.org/10.1109/
ICISC47916.2020.9171118
Bellman, R. (1966). Dynamic Programming.
Science,153(3731), 34–37. https://doi.org/10.1126/
science.153.3731.34
CDC. (2020). Data and Statistics on Autism Spectrum
Disorder | CDC. Centers for Disease Control and
Prevention. https://www.cdc.gov/ncbddd/autism/
data.html
Chasson, G. S., Harris, G. E., & Neely, W. J. (2007). Cost
Comparison of Early Intensive Behavioral Intervention
and Special Education for Children with Autism.
Journal of Child and Family Studies, 16(3), 401–413.
https://doi.org/10.1007/s10826-006-9094-1
Dawson, G., Jones, E. J. H., Merkle, K., Venema, K., Lowy,
R., Faja, S., Kamara, D., Murias, M., Greenson, J.,
Winter, J., Smith, M., Rogers, S. J., & Webb, S. J.
(2012). Early Behavioral Intervention Is Associated
With Normalized Brain Activity in Young Children
With Autism. Journal of the American Academy of
Child & Adolescent Psychiatry, 51(11), 1150–1159.
https://doi.org/10.1016/j.jaac.2012.08.018
Durstewitz, D., Koppe, G., & Meyer-Lindenberg, A.
(2019). Deep neural networks in psychiatry. Molecular
Psychiatry, 24(11), Article 11. https://doi.org/10.
1038/s41380-019-0365-9
Fenjiro, Y., & Benbrahim, H. (2018). Deep reinforcement
learning overview of the state of the art. Journal of
Automation Mobile Robotics and Intelligent Systems,
Vol. 12, No. 3. https://doi.org/10.14313/JAMRIS_3-
2018/15
Koegel, L., Singh, A. K., Koegel, R. L., & Koegel, L.
(2010). Improving Motivation for Academics in
Children with Autism. Journal of Autism and
Developmental Disorders, 40(9), 1057–1066.
https://doi.org/10.1007/s10803-010-0962-6
Kosmicki, J. A., Sochat, V., Duda, M., & Wall, D. P.
(2015). Searching for a minimal set of behaviors for
autism detection through feature selection-based
machine learning. Translational Psychiatry, 5(2), e514.
https://doi.org/10.1038/tp.2015.7
Lazaridis, A., Fachantidis, A., & Vlahavas, I. (2020). Deep
Reinforcement Learning: A State-of-the-Art
Walkthrough. Journal of Artificial Intelligence
Research, 69, 1421–1471. https://doi.org/10.1613/
jair.1.12412
Liu, S., See, K. C., Ngiam, K. Y., Celi, L. A., Sun, X., &
Feng, M. (2020). Reinforcement Learning for Clinical
Decision Support in Critical Care: Comprehensive
Review. Journal of Medical Internet Research, 22(7),
e18477. https://doi.org/10.2196/18477
Mechling, L. C., Gast, D. L., & Cronin, B. A. (2006). The
Effects of Presenting High-Preference Items, Paired
With Choice, Via Computer-Based Video
Programming on Task Completion of Students With
Autism. Focus on Autism and Other Developmental
Disabilities
, 21(1), 7–13. https://doi.org/10.1177/
10883576060210010201
Riden, B. S., Markelz, A. M., & Randolph, K. M. (2019).
Creating Positive Classroom Environments With
Electronic Behavior Management Programs. Journal of
Special Education Technology, 34(2), 133–141.
https://doi.org/10.1177/0162643418801815
Roman, J., Mehta, D. R., & Sajja, P. S. (2018). Multi-agent
Simulation Model for Sequence Generation for
Specially Abled Learners. In S. C. Satapathy & A. Joshi
(Eds.), Information and Communication Technology
for Intelligent Systems (ICTIS 2017)—Volume 1 (pp.
575–580). Springer International Publishing.
Russell, S., & Norvig, P. (2016). Artificial Intelligence: A
Modern Approach, Global Edition. Pearson.
Schuetze, M., Rohr, C. S., Dewey, D., McCrimmon, A., &
Bray, S. (2017). Reinforcement Learning in Autism
Spectrum Disorder. Frontiers in Psychology, 8.
https://doi.org/10.3389/fpsyg.2017.02035
Siyam, N. (2018). Special Education Teachers’
Perceptions on Using Technology for Communication
Practices. https://bspace.buid.ac.ae/handle/1234/1349
Siyam, N. (2019). Factors impacting special education
teachers’ acceptance and actual use of technology.
Education and Information Technologies, 24(3), 2035–
2057. https://doi.org/10.1007/s10639-018-09859-y
Siyam, N. (2021). Using Mobile Technology for
Coordinating Educational Plans and Supporting
Decision Making Through Reinforcement Learning in
Inclusive Settings [Thesis, The British University in
Dubai (BUiD)]. https://bspace.buid.ac.ae/handle/
1234/1879
Siyam, N., & Abdallah, S. (2021). A Pilot Study.
Investigating the Use of Mobile Technology for
Coordinating Educational Plans in Inclusive Settings.
Journal of Special Education Technology, 1–14.
https://doi.org/10.1177/01626434211033581
Siyam, N., & Abdallah, S. (2022). Toward automatic
motivator selection for autism behavior intervention
therapy. Universal Access in the Information Society.
https://doi.org/10.1007/s10209-022-00914-7
Stevens, E., Atchison, A., Stevens, L., Hong, E.,
Granpeesheh, D., Dixon, D., & Linstead, E. (2017). A
Cluster Analysis of Challenging Behaviors in Autism
Spectrum Disorder. 2017 16th IEEE International
Conference on Machine Learning and Applications
(ICMLA), 661–666. https://doi.org/10.1109/ICMLA.
2017.00-85
Stratton, S. J. (2019). Quasi-Experimental Design (Pre-Test
and Post-Test Studies) in Prehospital and Disaster
Research. Prehospital and Disaster Medicine.
Cambridge University Press, vol. 34(6), pp. 573–574
Vijayan, A., Janmasree, S., Keerthana, C., & Baby Syla
(2018). A Framework for Intelligent Learning Assistant
Platform Based on Cognitive Computing for Children
with Autism Spectrum Disorder. 2018 International
CET Conference on Control, Communication, and
Computing (IC4), 361–365. https://doi.org/10.1109/
CETIC4.2018.8530940.