Hamilton, J. (2008). Understanding Crude Oil Prices. Tech-
nical Report w14492, National Bureau of Economic
Research, Cambridge, MA.
Hovy, E. H. (2015). What are Sentiment, Affect, and Emo-
tion? Applying the Methodology of Michael Zock to
Sentiment Analysis. In Gala, N., Rapp, R., and Bel-
Enguix, G., editors, Language Production, Cognition,
and the Lexicon, pages 13–24. Springer International
Publishing, Cham.
Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Zhao, T.
(2020). SMART: Robust and Efficient Fine-Tuning
for Pre-trained Natural Language Models through
Principled Regularized Optimization. Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2177–2190. arXiv:
1911.03437.
Li, X., Shang, W., and Wang, S. (2019). Text-based crude
oil price forecasting: A deep learning approach. In-
ternational Journal of Forecasting, 35(4):1548–1560.
Li, X., Xie, H., Chen, L., Wang, J., and Deng, X. (2014).
News impact on stock price return via sentiment anal-
ysis. Knowledge-Based Systems, 69:14–23.
Liew, J. S. Y. (2016). Fine-grained Emotion Detection in
Microblog Text. PhD thesis.
Loughran, T. and Mcdonald, B. (2011). When Is a Liability
Not a Liability? Textual Analysis, Dictionaries, and
10-Ks. The Journal of Finance, 66(1):35–65.
Loughran, T. and McDonald, B. (2016). Textual analysis
in accounting and finance: A survey. Journal of Ac-
counting Research, 54(4):1187–1230.
Malkiel, B. G. (1989). Efficient market hypothesis. In Fi-
nance, pages 127–134. Springer.
Malo, P., Sinha, A., Korhonen, P., Wallenius, J., and Takala,
P. (2014). Good debt or bad debt: Detecting seman-
tic orientations in economic texts: Good Debt or Bad
Debt. Journal of the Association for Information Sci-
ence and Technology, 65(4):782–796.
McCarthy, R. V., McCarthy, M. M., Ceccucci, W., Ha-
lawi, L., and SpringerLink (Online service) (2019).
Applying Predictive Analytics Finding Value in Data.
OCLC: 1204071994.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vector
space.
Mohammad, S. M. (2021). Sentiment Analysis: Automat-
ically Detecting Valence, Emotions, and Other Affec-
tual States from Text. Number: arXiv:2005.11882
arXiv:2005.11882 [cs].
Pennington, J., Socher, R., and Manning, C. (2014). Glove:
Global Vectors for Word Representation. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–
1543, Doha, Qatar. Association for Computational
Linguistics.
Plutchik, R. (1982). A psychoevolutionary theory of emo-
tions:. Social Science Information.
Qian, B. and Rasheed, K. (2007). Stock market predic-
tion with multiple classifiers. Applied Intelligence,
26(1):25–33. Publisher: Springer.
Smith, A. (1776). An Inquiry into the Nature and Causes of
the Wealth of Nations. McMaster University Archive
for the History of Economic Thought.
Susanto, Y., Livingstone, A., Ng, B. C., and Cambria, E.
(2020). The Hourglass model revisited. IEEE Intelli-
gent Systems, 35(5).
Taboada, M. (2016). Sentiment analysis: An overview from
linguistics. Annual Review of Linguistics, 2(1):325–
347.
Tang, D., Qin, B., Feng, X., and Liu, T. (2016). Effec-
tive LSTMs for target-dependent sentiment classifica-
tion. In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 3298–3307, Osaka, Japan.
The COLING 2016 Organizing Committee.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention Is All You Need. arXiv:1706.03762
[cs]. arXiv: 1706.03762.
Weichselbraun, A., Steixner, J., Brasoveanu, A. M. P.,
Scharl, A., G
¨
obel, M., and Nixon, L. J. B. (2022).
Automatic Expansion of Domain-Specific Affective
Models for Web Intelligence Applications. Cognitive
Computation, 14(1):228–245.
Wex, F., Widder, N., Liebmann, M., and Neumann, D.
(2013). Early Warning of Impending Oil Crises Using
the Predictive Power of Online News Stories. In 2013
46th Hawaii International Conference on System Sci-
ences, pages 1512–1521, Wailea, HI, USA. IEEE.
Xing, F., Malandri, L., Zhang, Y., and Cambria, E. (2020).
Financial Sentiment Analysis: An Investigation into
Common Mistakes and Silver Bullets. In Proceed-
ings of the 28th International Conference on Compu-
tational Linguistics, pages 978–987, Barcelona, Spain
(Online). International Committee on Computational
Linguistics.
Yenicelik, K. D. (2020). Understanding and Exploit-
ing Subspace Organization in Contextual Word Em-
beddings. Masterthese, Eidgen
¨
ossische Technische
Hochschule Z
¨
urich, Z
¨
urich 8006, Schweiz.
Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun,
R., Torralba, A., and Fidler, S. (2015). Aligning Books
and Movies: Towards Story-Like Visual Explanations
by Watching Movies and Reading Books. In Proceed-
ings of the IEEE International Conference on Com-
puter Vision (ICCV).
ICEIS 2023 - 25th International Conference on Enterprise Information Systems
334