Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N.,
Borchers, A., et al. (2017). In-datacenter performance
analysis of a tensor processing unit. In ISCA ’17,
pages 1–12.
Kariyappa, S., Prakash, A., and Qureshi, M. K. (2021).
Maze: Data-free model stealing attack using zeroth-
order gradient estimation. In CVPR 2021, pages
13814–13823.
Kato, S., Takeuchi, E., Ishiguro, Y., Ninomiya, Y., Takeda,
K., and Hamada, T. (2015). An open approach to au-
tonomous vehicles. IEEE Micro, 35(6):60–68.
Ketkar, N. (2017). Introduction to keras. In Deep learning
with Python, pages 97–111. Springer.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25.
Lattner, C. and Adve, V. (2004). Llvm: A compilation
framework for lifelong program analysis & transfor-
mation. In CGO 2004., pages 75–86. IEEE.
Leary, C. and Wang, T. (2017). Xla: Tensorflow, compiled.
TensorFlow Dev Summit.
LeCun, Y. (1998). The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. nature, 521(7553):436–444.
Li, M., Liu, Y., Liu, X., Sun, Q., You, X., Yang, H.,
Luan, Z., and Qian, D. (2020). The deep learning
compiler: A comprehensive survey. arXiv preprint
arXiv:2002.03794.
Liang, Y., Cai, Z., Yu, J., Han, Q., and Li, Y. (2018). Deep
learning based inference of private information using
embedded sensors in smart devices. IEEE Network,
32(4):8–14.
Liu, Z., Yuan, Y., Wang, S., Xie, X., and Ma, L. (2022).
Decompiling x86 deep neural network executables.
arXiv preprint arXiv:2210.01075.
Markham, A. and Jia, Y. (2017). Caffe2: Portable high-
performance deep learning framework from facebook.
NVIDIA Corporation.
Oh, S. J., Schiele, B., and Fritz, M. (2019). Towards
reverse-engineering black-box neural networks. In
Explainable AI: Interpreting, Explaining and Visual-
izing Deep Learning, pages 121–144. Springer.
Orekondy, T., Schiele, B., and Fritz, M. (2019). Knockoff
nets: Stealing functionality of black-box models. In
CVPR 2019, pages 4954–4963.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. (2017). Automatic differentiation in pytorch.
In NIPS-W.
Rotem, N., Fix, J., Abdulrasool, S., Catron, G., Deng, S.,
Dzhabarov, R., Gibson, N., Hegeman, J., Lele, M.,
Levenstein, R., et al. (2018). Glow: Graph lower-
ing compiler techniques for neural networks. arXiv
preprint arXiv:1805.00907.
Schmidhuber, J. (2015). Deep learning in neural networks:
An overview. Neural networks, 61:85–117.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I.,
Kang, M. G., Liang, Z., Newsome, J., Poosankam,
P., and Saxena, P. (2008). Bitblaze: A new approach
to computer security via binary analysis. In ICISSP
2008, pages 1–25. Springer.
Team, K. (2022a). Keras applications.
Team, K. (2022b). Keras examples.
Tram
`
er, F., Zhang, F., Juels, A., Reiter, M. K., and Risten-
part, T. (2016). Stealing machine learning models via
prediction apis. In USENIX Security 16, pages 601–
618.
Vasilache, N., Zinenko, O., Theodoridis, T., Goyal,
P., DeVito, Z., Moses, W. S., Verdoolaege, S.,
Adams, A., and Cohen, A. (2018). Tensor com-
prehensions: Framework-agnostic high-performance
machine learning abstractions. arXiv preprint
arXiv:1802.04730.
Wang, F. and Shoshitaishvili, Y. (2017). Angr-the next gen-
eration of binary analysis. In 2017 IEEE Cybersecu-
rity Development (SecDev), pages 8–9. IEEE.
Wang, S., Wang, P., and Wu, D. (2015). Reassembleable
disassembling. In USENIX Security 15, pages 627–
642.
Wei, L., Luo, B., Li, Y., Liu, Y., and Xu, Q. (2018). I know
what you see: Power side-channel attack on convo-
lutional neural network accelerators. In ACSAC ’18,
pages 393–406.
Wu, C.-J., Brooks, D., Chen, K., Chen, D., Choudhury, S.,
Dukhan, M., Hazelwood, K., Isaac, E., Jia, Y., Jia, B.,
et al. (2019). Machine learning at facebook: Under-
standing inference at the edge. In HPCA 2019, pages
331–344. IEEE.
Wu, R., Kim, T., Tian, D. J., Bianchi, A., and Xu, D. (2022).
DnD: A cross-architecture deep neural network de-
compiler. In USENIX Security 22, pages 2135–2152.
Xiang, Y., Chen, Z., Chen, Z., Fang, Z., Hao, H., Chen, J.,
Liu, Y., Wu, Z., Xuan, Q., and Yang, X. (2020). Open
dnn box by power side-channel attack. IEEE Trans-
actions on Circuits and Systems II: Express Briefs,
67(11):2717–2721.
Yan, M., Fletcher, C. W., and Torrellas, J. (2020). Cache
telepathy: Leveraging shared resource attacks to learn
DNN architectures. In USENIX Security 20, pages
2003–2020.
Zhu, Y., Cheng, Y., Zhou, H., and Lu, Y. (2021). Hermes
attack: Steal DNN models with lossless inference ac-
curacy. In USENIX Security 21.
ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering
292