on Sensors, Signal and Image Processing, SSIP 2018,
page 51–55, New York, NY, USA. Association for
Computing Machinery.
Conner, C. and Poor, G. M. (2016). Correcting exercise
form using body tracking. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’16, page
3028–3034, New York, NY, USA. Association for
Computing Machinery.
Diraco, G., Leone, A., and Siciliano, P. (2010). An active vi-
sion system for fall detection and posture recognition
in elderly healthcare. In 2010 Design, Automation &
Test in Europe Conference & Exhibition (DATE 2010),
pages 1536–1541.
Garrido-Castro, J. L., Medina-Carnicer, R., Schiottis, R.,
Galisteo, A. M., Collantes-Estevez, E., and Gonzalez-
Navas, C. (2012). Assessment of spinal mobility
in ankylosing spondylitis using a video-based motion
capture system. Manual Therapy, 17(5):422–426.
Gurcay, E., Bal, A., Eksioglu, E., Hasturk, A. E., Gurcay,
A. G., and Cakci, A. (2009). Acute low back pain:
clinical course and prognostic factors. Disability and
rehabilitation, 31(10):840–845.
Hoffmann, M. D., Kraemer, W. J., and Judelson, D. A.
(2010). Therapeutic exercise. In Frontera, W. R. and
DeLisa, J. A., editors, DeLisa’s Physical Medicine
and Rehabilitation, chapter 61, page 1654. Lippincott
Williams & Wilkins Health, 5 edition.
Irving, G., Neves, A. L., Dambha-Miller, H., Oishi, A.,
Tagashira, H., Verho, A., and Holden, J. (2017). Inter-
national variations in primary care physician consul-
tation time: a systematic review of 67 countries. BMJ
open, 7(10):e017902.
Janka, M., Merkel, A., and Schuh, A. (2019). Diagnostik an
der lendenwirbels
¨
aule. MMW-Fortschritte der Medi-
zin, 161(1):55–58.
Liu, H., Liu, F., Fan, X., and Huang, D. (2021). Polar-
ized self-attention: Towards high-quality pixel-wise
regression.
Ma, Y., Sheng, B., Hart, R., and Zhang, Y. (2020). The
validity of a dual azure kinect-based motion capture
system for gait analysis: a preliminary study. In
2020 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA
ASC), pages 1201–1206.
Marschall, J., Hildebrandt, S., Zich, K., Tisch, T., S
¨
orensen,
J., and Nolting, H.-D. (2018). Gesundheitsreport
2018. beitr
¨
age zur gesundheits
¨
okonomie und ver-
sorgungsforschung (band 21). https://www.dak.de/
dak/download/gesundheitsreport-2108884.pdf. page
134.
Mattiuzzi, C., Lippi, G., and Bovo, C. (2020). Current epi-
demiology of low back pain. JJournal of Hospital
Management and Health Policy, 4.
Microsoft Inc. (2020). About Azure Kinect DK — Mi-
crosoft Docs.
Microsoft Inc. (2021). Azure kinect dk hardware specifica-
tions.
Olaogun, M. O., Adedoyin, R. A., Ikem, I. C., and Ani-
faloba, O. R. (2004). Reliability of rating low back
pain with a visual analogue scale and a semantic dif-
ferential scale. Physiotherapy theory and practice,
20(2):135–142.
Perret, C., Poiraudeau, S., Fermanian, J., Colau, M. M. L.,
Benhamou, M. A. M., and Revel, M. (2001). Validity,
reliability, and responsiveness of the fingertip-to-floor
test. Archives of physical medicine and rehabilitation,
82(11):1566–1570.
Rector, K., Bennett, C. L., and Kientz, J. A. (2013). Eyes-
free yoga: An exergame using depth cameras for blind
& low vision exercise. In Proceedings of the 15th
International ACM SIGACCESS Conference on Com-
puters and Accessibility, ASSETS ’13, New York, NY,
USA. Association for Computing Machinery.
Saß, A.-C., Lampert, T., Pr
¨
utz, F., Seeling, S., Starker,
A., Kroll, L. E., Rommel, A., Ryl, L., and Ziese,
T. (2015). Gesundheit in deutschland. gesundheits-
berichterstattung des bundes. gemeinsam getragen
von rki und destatis. page 69.
Schmidt, C. O., Raspe, H., Pfingsten, M., Hasenbring, M.,
Basler, H. D., Eich, W., and Kohlmann, T. (2007).
Back pain in the german adult population: prevalence,
severity, and sociodemographic correlates in a multi-
regional survey. Spine, 32(18):2005–2011.
statista (2022). Percentage of u.s. respondents that were
prescribed select treatments for their back pain as of
2017, by age.
Thar, M. C., Winn, K. Z. N., and Funabiki, N. (2019).
A proposal of yoga pose assessment method using
pose detection for self-learning. In 2019 International
Conference on Advanced Information Technologies
(ICAIT), pages 137–142.
T
¨
olgyessy, M., Dekan, M., Chovanec, L., and Hubinsk
´
y, P.
(2021). Evaluation of the azure kinect and its compar-
ison to kinect v1 and kinect v2. Sensors, 21(2).
von der Lippe, E., Krause, L., Porst, M., Wengler, A.,
Leddin, J., M
¨
uller, A., Zeisler, M.-L., Anton, A.,
Rommel, A., and study group, B. . (2021). Jour-
nal of health monitoring. pr
¨
avalenz von r
¨
ucken-
und nackenschmerzen in deutschland. ergebnisse der
krankheitslast- studie burden 2020.
Wang, J., Qiu, K., Peng, H., Fu, J., and Zhu, J. (2019).
Ai coach: Deep human pose estimation and analysis
for personalized athletic training assistance. In Pro-
ceedings of the 27th ACM International Conference
on Multimedia, MM ’19, page 2228–2230, New York,
NY, USA. Association for Computing Machinery.
Yang, L., Ren, Y., Hu, H., and Tian, B. (2015). New fast
fall detection method based on spatio-temporal con-
text tracking of head by using depth images. Sensors,
15(9):23004–23019.
Ye, M., Wang, X., Yang, R., Ren, L., and Pollefeys, M.
(2011). Accurate 3d pose estimation from a single
depth image. In 2011 International Conference on
Computer Vision, pages 731–738.
Zhou, Z., Tsubouchi, Y., and Yatani, K. (2019). Visualiz-
ing out-of-synchronization in group dancing. In The
Adjunct Publication of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology,
UIST ’19, page 107–109, New York, NY, USA. Asso-
ciation for Computing Machinery.
HEALTHINF 2023 - 16th International Conference on Health Informatics
496