Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 248–255.
Dwivedi, M., Malik, H. S., Omkar, S. N., Monis, E. B.,
Khanna, B., Samal, S. R., Tiwari, A., and Rathi, A. M.
(2020). Deep learning-based car damage classification
and detection.
Ess, A., Leibe, B., and Van Gool, L. (2010). Object de-
tection and tracking for autonomous navigation in dy-
namic environments. I. J. Robotic Res., 29:1707–
1725.
French, M. and Handy, R. (2007). Spectrograms: Turning
signals into pictures. Journal of Engineering Technol-
ogy, 24:32–35.
Gontscharov, S., Baumgaertel, K., Kneifel, A., and Krieger,
K.-L. (2014). Algorithm development for minor dam-
age identification in vehicle bodies using adaptive sen-
sor data processing. Procedia Technology, 15.
Hashimoto, W., Hirota, M., Araki, T., Yamamoto, Y., Egi,
M., Hirate, M., Maura, M., and Ishikawa, H. (2019).
Detection of car abnormal vibration using machine
learning. In 2019 IEEE International Symposium on
Multimedia (ISM), pages 40–407.
Hunter, J. D. (2007). Matplotlib: A 2d graphics environ-
ment. Computing in Science & Engineering, 9(3):90–
95.
Kyu, P. M. and Woraratpanya, K. (2020). Car damage de-
tection and classification. In Proceedings of the 11th
International Conference on Advances in Information
Technology, IAIT2020, New York, NY, USA. Associ-
ation for Computing Machinery.
Li, L., Ono, K., and Ngan, C.-K. (2021). A Deep Learning
and Transfer Learning Approach for Vehicle Damage
Detection. The International FLAIRS Conference Pro-
ceedings, 34(1).
Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). Path ag-
gregation network for instance segmentation. In 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8759–8768.
Liu, S., Zhang, C., and Ma, J. (2016). Stacked auto-
encoders for feature extraction with neural networks.
pages 377–384.
Mateo, C. and Talavera, J. (2017). Short-time fourier trans-
form with the window size fixed in the frequency do-
main. Digital Signal Processing, 77.
O’Shea, K. and Nash, R. (2015). An introduction to convo-
lutional neural networks. ArXiv e-prints.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Punetha, D., Kumar, D., and Mehta, V. (2012). Design and
realization of the accelerometer based transportation
system (ats). International Journal of Computer Ap-
plications, 49:17–20.
Sammarco, M. and Detyniecki, M. (2018). Crashzam:
Sound-based car crash detection.
Sammarco, M. and Detyniecki, M. (2019). Car Accident
Detection and Reconstruction Through Sound Analy-
sis with Crashzam, pages 159–180.
Shi, G., Chan, C.-S., Zhang, G., Li, W., Leong, P., and Le-
ung, K.-S. (2008). Towards a mobile airbag system
using mems sensors and embedded intelligence. pages
634–639.
Simonyan, K. and Zisserman, A. (2015). Very deep con-
volutional networks for large-scale image recognition.
In International Conference on Learning Representa-
tions.
Singh, R., Ayyar, M. P., Sri Pavan, T. V., Gosain, S., and
Shah, R. R. (2019). Automating car insurance claims
using deep learning techniques. In 2019 IEEE Fifth
International Conference on Multimedia Big Data
(BigMM), pages 199–207.
van der Maaten, L. and Hinton, G. (2008). Viualizing data
using t-sne. Journal of Machine Learning Research,
9:2579–2605.
Vejdannik, M., Sadr, A., Albuquerque, V., and Tavares, J.
(2018). Signal Processing for NDE, pages 1–19.
White, J., Thompson, C., Turner, H., Dougherty, B., and
Schmidt, D. C. (2011). Wreckwatch: Automatic
traffic accident detection and notification with smart-
phones. Mob. Netw. Appl., 16(3):285–303.
Wirth, R. and Hipp, J. (2000). Crisp-dm: Towards a stan-
dard process model for data mining. Proceedings of
the 4th International Conference on the Practical Ap-
plications of Knowledge Discovery and Data Mining.
Yunhui, S. and Qiuqi, R. (2004). Continuous wavelet trans-
forms. volume 1, pages 207– 210 vol.1.
Zaldivar, J., Calafate, C. M. T., Cano, J.-C., and Manzoni,
P. (2011). Providing accident detection in vehicular
networks through obd-ii devices and android-based
smartphones. 2011 IEEE 36th Conference on Local
Computer Networks, pages 813–819.
VEHITS 2023 - 9th International Conference on Vehicle Technology and Intelligent Transport Systems
186