Preskill, J. (2018). Quantum Computing in the NISQ era
and beyond. Quantum, 2:79.
Proctor, T., Rudinger, K., Young, K., Nielsen, E., and Blume-
Kohout, R. (2022). Measuring the capabilities of quan-
tum computers. Nature Physics, 18(1):75–79.
Quetschlich, N., Burgholzer, L., and Wille, R. (2022). Pre-
dicting Good Quantum Circuit Compilation Options.
Russell, N. (2007). Complexity of control of Borda count
elections.
Sáez, S. G., Andrikopoulos, V., and Leymann, F. (2016).
Consolidation of Performance and Workload Models
in Evolving Cloud Application Topologies. In Proceed-
ings of the 6th International Conference on Cloud Com-
puting and Service Science (CLOSER 2016), pages
160–169, Rome, Italy. SciTePress.
Salm, M., Barzen, J., Breitenbücher, U., Leymann, F., Weder,
B., and Wild, K. (2020a). The NISQ Analyzer: Au-
tomating the Selection of Quantum Computers for
Quantum Algorithms. In Proceedings of the 14th Sym-
posium and Summer School on Service-Oriented Com-
puting (SummerSOC 2020), pages 66–85. Springer In-
ternational Publishing.
Salm, M., Barzen, J., Leymann, F., and Weder, B. (2020b).
About a Criterion of Successfully Executing a Circuit
in the NISQ Era: What
wd ≪
1
/ε
eff
Really Means. In
Proceedings of the 1st ACM SIGSOFT International
Workshop on Architectures and Paradigms for Engi-
neering Quantum Software (APEQS 2020), pages 10–
13. ACM.
Salm, M., Barzen, J., Leymann, F., and Weder, B. (2022a).
Prioritization of Compiled Quantum Circuits for Differ-
ent Quantum Computers. In Proceedings of the 2022
IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER 2022), pages
1258–1265. IEEE.
Salm, M., Barzen, J., Leymann, F., Weder, B., and Wild,
K. (2021). Automating the Comparison of Quantum
Compilers for Quantum Circuits. In Proceedings of
the 15
th
Symposium and Summer School on Service-
Oriented Computing (SummerSOC 2021), pages 64–80.
Springer International Publishing.
Salm, M., Barzen, J., Leymann, F., and Wundrack, P. (2022b).
Optimizing the Prioritization of Compiled Quantum
Circuits by Machine Learning Approaches. In Pro-
ceedings of the 16
th
Symposium and Summer School
on Service-Oriented Computing (SummerSOC 2022),
pages 161–181. Springer.
Schuld, M., Sinayskiy, I., and Petruccione, F. (2016). Predic-
tion by linear regression on a quantum computer. Phys.
Rev. A, 94:022342.
Siraichi, M. Y., Santos, V. F. d., Collange, S., and Quin-
tão Pereira, F. M. (2018). Qubit Allocation. In CGO
2018 - International Symposium on Code Generation
and Optimization, pages 1–12.
Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edging-
ton, A., and Duncan, R. (2020). t
|
ket
⟩
: A retargetable
compiler for NISQ devices. Quantum Science and
Technology, 6.
Swain, M. J. and Ballard, D. H. (1991). Color indexing.
International Journal of Computer Vision, 7(1):11–32.
Sáez, S. G., Andrikopoulos, V., Leymann, F., and Strauch,
S. (2014). Towards dynamic application distribution
support for performance optimization in the cloud. In
2014 IEEE 7th International Conference on Cloud
Computing, pages 248–255.
University of Stuttgart (2023a). Case Study.
https://github.com/UST-QuAntiL/nisq-analyzer-
content/tree/paper/pre-selection/pre-selection/Case-
Study.
University of Stuttgart (2023b). Content Reposi-
tory. https://github.com/UST-QuAntiL/nisq-analyzer-
content/tree/paper/pre-selection/pre-selection.
University of Stuttgart (2023c). ML Algorithm Imple-
mentations. https://github.com/UST-QuAntiL/nisq-
analyzer-content/tree/paper/pre-selection/pre-
selection/Prediction-Algorithms.
Vapnik, V. N. (1995). The Nature of Statistical Learning
Theory. Springer-Verlag, Berlin, Heidelberg.
Verma, M., Gangadharan, G. R., Narendra, N. C., Vadla-
mani, R., Inamdar, V., Ramachandran, L., Calheiros,
R. N., and Buyya, R. (2016). Dynamic resource de-
mand prediction and allocation in multi-tenant service
clouds. Concurrency and Computation: Practice and
Experience, 28(17):4429–4442.
Vietz, D., Barzen, J., Leymann, F., and Wild, K. (2021).
On Decision Support for Quantum Application De-
velopers: Categorization, Comparison, and Analysis
of Existing Technologies. In Computational Science
– ICCS 2021, pages 127–141. Springer International
Publishing.
Wang, J.-J., Jing, Y.-Y., Zhang, C.-F., and Zhao, J.-H. (2009).
Review on multi-criteria decision analysis aid in sus-
tainable energy decision-making. Renewable and Sus-
tainable Energy Reviews, 13(9):2263–2278.
Weder, B., Barzen, J., Leymann, F., Salm, M., and Wild,
K. (2021). QProv: A provenance system for quantum
computing. IET QuantumCommunication, 2(4):171–
181.
Willmott, C. J. and Matsuura, K. (2005). Advantages of the
mean absolute error (MAE) over the root mean square
error (RMSE) in assessing average model performance.
Climate research, 30(1):79–82.
Yildiz, B., Bilbao, J., and Sproul, A. (2017). A review and
analysis of regression and machine learning models
on commercial building electricity load forecasting.
Renewable and Sustainable Energy Reviews, 73:1104–
1122.
Zhong, H.-S. et al. (2020). Quantum computational advan-
tage using photons. Science.
How to Select Quantum Compilers and Quantum Computers Before Compilation
183