Ghosal, D., Majumder, N., Gelbukh, A., Mihalcea, R. and
Poria, S. (2020). COSMIC: COmmonSense knowledge
for eMotion identification in conversations. [online]
doi:10.48550/ARXIV.2010.02795.
Gibbs, R. (2000). Irony in Talk Among Friends. Metaphor
and Symbol, 15(1), pp.5–27.
doi:10.1207/s15327868ms151&2_2.
Grice, H.P. (1989). Studies in the way of words.
Cambridge, Mass.: Harvard Univ. Press, Ca.
Hamilton, K., Nayak, A., Bozic, B. and Longo, L. (2022).
Is neuro-symbolic AI meeting its promise in natural
language processing? A structured review.
Johnson, J. (2021). AI/Human Augmentation: How AI &
Humans Can Work Together. [online] BMC Blogs.
Khurana, D., Koli, A., Khatter, K. and Singh, S. (2022).
Natural language processing: state of the art, current
trends and challenges. Multimedia Tools and
Applications. doi:10.1007/s11042-022-13428-4.
Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T.
and De Raedt, L. (2021a). Neural probabilistic logic
programming in DeepProbLog. Artificial Intelligence,
298, p.103504. doi:10.1016/j.artint.2021.103504.
Manhaeve, R., Marra, G., Demeester, T., Dumancic, S.,
Kimmig, A. and De Raedt, Luc (2021b). Chapter 7.
Neuro-symbolic AI = neural + logical + probabilistic
AI. doi:10.3233/FAIA210354.
Mao, J., Gan, C., Kohli, P., Tenenbaum, J.B. and Wu, J.
(2019). The neuro-symbolic concept learner:
Interpreting scenes, words, and sentences from natural
supervision. [online] doi:10.48550/ARXIV.1904.
12584.
Marchant, J. (2017). » Attitude. [online] www.
emotionalintelligenceatwork.com. Link.
Mehrabian A., Communicating without words, Psychol.
Today. (1968) 53–55.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and
Sutskever, I. (2019). Language models are
unsupervised multitask learners. OpenAI blog, 1, p.9.
Ray, A., Mishra, S., Nunna, A. and Bhattacharyya, P.
(2022). A multimodal corpus for emotion recognition
in sarcasm. [online] doi:10.48550/ARXIV.2206.02119.
Ren, L., Xu, B., Lin, H., Liu, X. and Yang, L. (2020).
Sarcasm Detection with Sentiment Semantics
Enhanced Multi-level Memory Network.
Neurocomputing, 401, pp.320–326. doi:10.1016/j.
neucom.2020.03.081.
Reyes, A., Rosso, P. and Veale, T. (2012). A
multidimensional approach for detecting irony in
Twitter. Language Resources and Evaluation, 47(1),
pp.239–268. doi:10.1007/s10579-012-9196-x.
Rosen, D. (1995). How good were those probability
predictions? The expected recommendation loss (erl)
scoring rule. Maximum Entropy and Bayesian
Methods.
Sarker, M.K., Zhou, L., Eberhart, A. and Hitzler, P. (2021).
Neuro-symbolic artificial intelligence: Current trends.
[online] doi:10.48550/ARXIV.2105.05330.
Sangwan S., Akhtar M. S., Behera P. and Ekbal A., (2020),
I didn’t mean what I wrote! Exploring Multimodality
for Sarcasm Detection, International Joint Conference
on Neural Networks (IJCNN), pp. 1-8, doi:
10.1109/IJCNN48605.2020.9206905.
Saussure, Ferdinand de. (1916). Cours de linguistique
générale. Paris: Payot
Saxton, D., Grefenstette, E., Hill, F. and Kohli, P. (2019).
Analysing mathematical reasoning abilities of neural
models. [online] doi:10.48550/ARXIV.1904.01557.
Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L.,
van den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe,
D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap,
T., Leach, M., Kavukcuoglu, K., Graepel, T. and
Hassabis, D. (2016). Mastering the game of Go with
deep neural networks and tree search. Nature,
529(7587), pp.484–489. doi:10.1038/nature16961.
Sperber, D. and Wilson, D. (1990). Relevance
communication and cognition. Oxford Blackwell.
Tabacaru, S. (2019). A Multimodal Study of Sarcasm in
Interactional Humor. Berlin: De Gruyter Mouton.
Tu, G., Wen, J., Liu, H., Chen, S., Zheng, L. and Jiang, D.
(2021). Exploration meets exploitation: Multitask
learning for emotion recognition based on discrete and
dimensional models. Knowledge-Based Systems,
p.107598. doi:10.1016/j.knosys.2021.107598.
Tu, G., Wen, J., Liu, C., Jiang, D. and Cambria, E. (2022).
Context- and Sentiment-Aware Networks for Emotion
Recognition in Conversation. IEEE Transactions on
Artificial Intelligence, pp.1–1. doi:10.1109/tai.
2022.3149234.
Weitkämper, F. (2021). An asymptotic analysis of
probabilistic logic programming, with implications for
expressing projective families of distributions. [online]
doi:10.48550/ARXIV.2102.08777.
Xu, J., Zhang, Z., Friedman, T., Liang, Y. and Broeck, G.,
2018, July. A semantic loss function for deep learning
with symbolic knowledge. In International conference
on machine learning (pp. 5502-5511). PMLR.
Yalçın, O.G. (2021). Symbolic vs. Subsymbolic AI
Paradigms for AI Explainability. [online] Medium.
Link.
Zahiri S. M., Choi J.D., (2018), Emotion Detection on TV
Show Transcripts with Sequence-based Convolutional
Neural Networks https://doi.org/10.48550/arXiv.
1708.04299.