Machine Vision Conference 2021, BMVC 2021, On-
line, November 22-25, 2021, page 277. BMVA Press.
Kim, T. S., Shim, B., Peven, M., Qiu, W., Yuille, A., and
Hager, G. D. (2022). Learning from synthetic vehi-
cles. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pages 500–
508.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Pereira, F., Burges, C. J. C., Bottou,
L., and Weinberger, K. Q., editors, Advances in Neu-
ral Information Processing Systems 25, pages 1097–
1105. Curran Associates, Inc.
Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L.,
and Doll
´
ar, P. (2015). Microsoft coco: Common ob-
jects in context.
Liu, Z., Luo, P., Qiu, S., Wang, X., and Tang, X. (2016).
Deepfashion: Powering robust clothes recognition and
retrieval with rich annotations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 1096–1104.
Maik, V., Paik, D., Lim, J., Park, K., and Paik, J. (2010).
Hierarchical pose classification based on human phys-
iology for behaviour analysis. Computer Vision, IET,
4:12 – 24.
MakeHuman (2022). Makehuman community. http://www.
makehumancommunity.org/. Accessed: 2022-11-01.
Martin, M., Roitberg, A., Haurilet, M., Horne, M., Reiß,
S., Voit, M., and Stiefelhagen, R. (2019). Drive&act:
A multi-modal dataset for fine-grained driver behavior
recognition in autonomous vehicles. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 2801–2810.
Ohn-Bar, E., Martin, S., Tawari, A., and Trivedi, M. M.
(2014). Head, eye, and hand patterns for driver activ-
ity recognition. In 2014 22nd international conference
on pattern recognition, pages 660–665. IEEE.
Pytorch metrics (2022). Pytorch implementation of com-
mon gan metrics. https://github.com/w86763777/
pytorch-gan-metrics. Accessed: 2022-11-01.
Ribeiro, R. F. and Costa, P. D. P. (2019). Driver gaze
zone dataset with depth data. In 2019 14th IEEE In-
ternational Conference on Automatic Face & Gesture
Recognition (FG 2019), pages 1–5.
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. (2016). Improved tech-
niques for training gans. Advances in neural informa-
tion processing systems, 29.
Selim, M., Firintepe, A., Pagani, A., and Stricker, D.
(2020). Autopose: Large-scale automotive driver head
pose and gaze dataset with deep head orientation base-
line. In VISIGRAPP (4: VISAPP), pages 599–606.
Simard, P. Y., Steinkraus, D., and Platt, J. C. (2003). Best
practices for convolutional neural networks applied to
visual document analysis. In Proceedings of the Sev-
enth International Conference on Document Analysis
and Recognition-Volume 2, page 958.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wo-
jna, Z. (2016). Rethinking the inception architecture
for computer vision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 2818–2826.
Tang, H., Bai, S., Zhang, L., Torr, P. H., and Sebe, N.
(2020). Xinggan for person image generation. In Pro-
ceedings of the European conference on computer vi-
sion, pages 717–734.
Unity (2022). Unity asset store. https://assetstore.unity.
com/. Accessed: 2022-11-01.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: from error visi-
bility to structural similarity. IEEE transactions on
image processing, 13(4):600–612.
Wu, Y., Yuan, Y., and Wang, Q. (2022). Learning from
synthetic data for crowd instance segmentation in the
wild. In 2022 IEEE International Conference on Im-
age Processing (ICIP), pages 2391–2395. IEEE.
Zhang, J., Li, K., Lai, Y.-K., and Yang, J. (2021). Pise:
Person image synthesis and editing with decoupled
gan. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
7982–7990.
Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., and Tian,
Q. (2015). Scalable person re-identification: A bench-
mark. In Proceedings of the IEEE/CVF International
Conference on Computer Vision.
Zhu, Z., Huang, T., Shi, B., Yu, M., Wang, B., and Bai, X.
(2019). Progressive pose attention transfer for person
image generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 2347–2356.
Synthetic Driver Image Generation for Human Pose-Related Tasks
769