Friedman J, Hastie T, Tibshirani R (2010). Regularization
Paths for Generalized Linear Models via Coordinate
Descent. Journal of Statistical Software, 33(1), 1-22.
URL https://www.jstatsoft.org/v33/i01/
Hofmanninger, J., Prayer, F., Pan, J., Röhrich, S., Prosch,
H., & Langs, G. (2020). Automatic lung segmentation
in routine imaging is primarily a data diversity problem,
not a methodology problem. European Radiology
Experimental, 4(1), 50. https://doi.org/10.1186/s41747-
020-00173-2
Kasinathan, G., & Jayakumar, S. (2022). Cloud-based lung
tumor detection and stage classification using deep
learning techniques. BioMed Research International,
2022, 4185835. https://doi.org/10.1155/2022/4185835
Mali SA, Ibrahim A, Woodruff HC, Andrearczyk V, Müller
H, Primakov S, Salahuddin Z, Chatterjee A, Lambin P.
(2021) Making Radiomics More Reproducible across
Scanner and Imaging Protocol Variations: A Review of
Harmonization Methods. Journal of Personalized
Medicine; 11(9):842.
https://doi.org/10.3390/jpm11090842
Orlhac, F., Eertink, J. J., Cottereau, A.-S., Zijlstra, J. M.,
Thieblemont, C., Meignan, M., Boellaard, R., & Buvat,
I. (2022). A guide to ComBat harmonization of imaging
biomarkers in multicenter studies. Journal of Nuclear
Medicine: Official Publication, Society of Nuclear
Medicine, 63(2), 172–179. https://doi.org/10.2967/
jnumed.121.262464
Rami-Porta, R., Crowley, J. J., & Goldstraw, P. (2009). The
revised TNM staging system for lung cancer. Annals of
Thoracic and Cardiovascular Surgery: Official Journal
of the Association of Thoracic and Cardiovascular
Surgeons of Asia, 15(1), 4–9.
Raz, D. J., Zell, J. A., Ou, S.-H. I., Gandara, D. R., Anton-
Culver, H., & Jablons, D. M. (2007). Natural history of
stage I non-small cell lung cancer: implications for
early detection. Chest, 132(1), 193–199.
https://doi.org/10.1378/chest.06-3096
Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A.
(2022). Cancer statistics, 2022. CA: A Cancer Journal
for Clinicians, 72(1), 7–33. https://doi.org/10.3322/
caac.21708
Thandra, K. C., Barsouk, A., Saginala, K., Aluru, J. S., &
Barsouk, A. (2021). Epidemiology of lung cancer.
Contemporary Oncology (Poznan, Poland), 25(1), 45–
52. https://doi.org/10.5114/wo.2021.103829
Ubaldi, L., Valenti, V., Borgese, R. F., Collura, G.,
Fantacci, M. E., Ferrera, G., Iacoviello, G., Abbate, B.
F., Laruina, F., Tripoli, A., Retico, A., & Marrale, M.
(2021). Strategies to develop radiomics and machine
learning models for lung cancer stage and histology
prediction using small data samples. Physica Medica:
PM: An International Journal Devoted to the
Applications of Physics to Medicine and Biology:
Official Journal of the Italian Association of
Biomedical Physics (AIFB)
, 90, 13–22.
https://doi.org/10.1016/j.ejmp.2021.08.015
van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny,
A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H.,
Fillion-Robin, J.-C., Pieper, S., & Aerts, H. J. W. L.
(2017). Computational radiomics system to decode the
radiographic phenotype. Cancer Research, 77(21),
e104–e107. https://doi.org/10.1158/0008-5472.can-17-
0339
Webb, W. R., Sarin, M., Zerhouni, E. A., Heelan, R. T.,
Glazer, G. M., & Gatsonis, C. (1993). Interobserver
variability in CT and MR staging of lung cancer.
Journal of Computer Assisted Tomography, 17(6),
841–846. https://doi.org/10.1097/00004728-19931100
0-00001
Wu, D. Y., Spangler, A. E., Vo, D. T., de Hoyos, A., &
Seiler, S. J. (2020). Simplified, standardized methods to
assess the accuracy of clinical cancer staging. Cancer
Treatment and Research Communications, 25(100253),
100253. https://doi.org/10.1016/j.ctarc.2020.100253
Yu, L., Tao, G., Zhu, L., Wang, G., Li, Z., Ye, J., & Chen,
Q. (2019). Prediction of pathologic stage in non-small
cell lung cancer using machine learning algorithm
based on CT image feature analysis. BMC Cancer,
19(1), 464. https://doi.org/10.1186/s12885-019-5646-9
Zeng, L., & Xie, J. (2014). Group variable selection via
SCAD-L2. Statistics, 48(1), 49–66. https://doi.org/
10.1080/02331888.2012.719513