learner. In European Conference on Computer Vision
(ECCV).
Lee, K., Lee, H., Lee, K., and Shin, J. (2018). Training
confidence-calibrated classifiers for detecting out-of-
distribution samples. In International Conference on
Learning Representations.
Liu, S., Yang, B., Yuen, P. C., and Zhao, G. (2016). A
3d mask face anti-spoofing database with real world
variations. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR)
Workshops.
Liu, S. Q., Lan, X., and Yuen, P. C. (2020a). Temporal sim-
ilarity analysis of remote photoplethysmography for
fast 3D mask face presentation attack detection. Pro-
ceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision (WACV), pages 2597–
2605.
Liu, X., Fromm, J., Patel, S., and McDuff, D. (2020b).
Multi-task temporal shift attention networks for on-
device contactless vitals measurement. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin,
H., editors, Advances in Neural Information Process-
ing Systems, volume 33, pages 19400–19411. Curran
Associates, Inc.
Liu, X., Yang, X., Wang, D., Wong, A., Ma, L., and Li, L.
(2022). Vidaf: A motion-robust model for atrial fib-
rillation screening from facial videos. IEEE Journal
of Biomedical and Health Informatics, 26(4):1672–
1683.
Lu, H., Han, H., and Zhou, S. K. (2021). Dual-GAN : Joint
BVP and Noise Modeling for Remote Physiological
Measurement. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 12404–
12413.
McDuff, D. (2021). Camera measurement of physiological
vital signs. CoRR, abs/2111.11547.
McDuff, D. J., Blackford, E. B., and Estepp, J. R. (2017).
The Impact of Video Compression on Remote Cardiac
Pulse Measurement Using Imaging Photoplethysmog-
raphy. IEEE International Conference on Automatic
Face and Gesture Recognition Workshops (FG), pages
63–70.
Mironenko, Y., Kalinin, K., Kopeliovich, M., and
Petrushan, M. (2020). Remote photoplethysmogra-
phy: Rarely considered factors. In IEEE Conference
on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pages 1197–1206.
Niu, X., Han, H., Shan, S., and Chen, X. (2018). VIPL-HR:
A multi-modal database for pulse estimation from
less-constrained face video. In Asian Conference on
Computer Vision (ACCV), pages 562–576.
Niu, X., Shan, S., Han, H., and Chen, X. (2020). Rhythm-
Net: End-to-end heart rate estimation from face via
spatial-temporal representation. IEEE Transactions
on Image Processing, 29:2409–2423.
Nowara, E. and McDuff, D. (2019). Combating the Im-
pact of Video Compression on Non-Contact Vital Sign
Measurement Using Supervised Learning. In IEEE In-
ternational Conference on Computer Vision Workshop
(ICCVW), pages 1706–1712. ISSN: 2473-9944.
Nowara, E. M., McDuff, D., and Veeraraghavan, A. (2021).
Systematic analysis of video-based pulse measure-
ment from compressed videos. Biomedical Optics Ex-
press, 12(1):494.
Scholkmann, F., Boss, J., and Wolf, M. (2012). An
efficient algorithm for automatic peak detection in
noisy periodic and quasi-periodic signals. Algorithms,
5(4):588–603.
Shaffer, F. and Ginsberg, J. P. (2017). An overview of heart
rate variability metrics and norms. Frontiers in Public
Health, 5.
Speth, J., Vance, N., Czajka, A., Bowyer, K., and Flynn, P.
(2021a). Unifying frame rate and temporal dilations
for improved remote pulse detection. Computer Vision
and Image Understanding (CVIU), pages 1056–1062.
Speth, J., Vance, N., Czajka, A., Bowyer, K., Wright, D.,
and Flynn, P. (2021b). Deception detection and re-
mote physiological monitoring: A dataset and base-
line experimental results. In International Joint Con-
ference on Biometrics (IJCB), pages 4264–4271.
Speth, J., Vance, N., Flynn, P., Bowyer, K. W., and
Czajka, A. (2022). Digital and physical-world at-
tacks on remote pulse detection. In Proceedings of
the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 2407–2416.
Stricker, R., Muller, S., and Gross, H. M. (2014). Non-
contact video-based pulse rate measurement on a mo-
bile service robot. IEEE International Symposium on
Robot and Human Interactive Communication, pages
1056–1062.
Verkruysse, W., Svaasand, L. O., and Nelson, J. S. (2008).
Remote plethysmographic imaging using ambient
light. Opt. Express, 16(26):21434–21445.
Wang, W., Den Brinker, A. C., and De Haan, G. (2019).
Single-Element Remote-PPG. IEEE Transactions on
Biomedical Engineering, 66(7):2032–2043.
Wang, W., den Brinker, A. C., Stuijk, S., and de
Haan, G. (2017). Algorithmic principles of remote
PPG. IEEE Transactions on Biomedical Engineering,
64(7):1479–1491.
Wang, W., Stuijk, S., and de Haan, G. (2015). Unsupervised
subject detection via remote ppg. IEEE Transactions
on Biomedical Engineering, 62(11):2629–2637.
Wang, W., Stuijk, S., and de Haan, G. (2017). Living-skin
classification via remote-ppg. IEEE Transactions on
Biomedical Engineering, 64(12):2781–2792.
Wu, B.-f., Wu, B.-j., Cheng, S.-e., and Sun, Y. (2022).
Motion-Robust Atrial Fibrillation Detection Based on
Remote-Photoplethysmography. XX(XX):1–12.
Yu, Z., Li, X., and Zhao, G. (2019). Remote photoplethys-
mograph signal measurement from facial videos us-
ing spatio-temporal networks. In Proceedings of the
British Machine Vision Conference (BMVC), pages 1–
12.
Yu*, Z., Peng*, W., Li, X., Hong, X., and Zhao, G. (2019).
Remote heart rate measurement from highly com-
pressed facial videos: an end-to-end deep learning so-
lution with video enhancement. In International Con-
ference on Computer Vision (ICCV).
BIOSIGNALS 2023 - 16th International Conference on Bio-inspired Systems and Signal Processing
116