Conference on Intelligent Computer Communication
and Processing (ICCP) (pp. 3-9). IEEE.
McCrae, S., & Zakhor, A. (2020, October). 3D object
detection for autonomous driving using temporal
LiDAR data. In 2020 IEEE International Conference on
Image Processing (ICIP) (pp. 2661-2665). IEEE.
Meyer, M., & Kuschk, G. (2019, October). Automotive
radar dataset for deep learning based 3d object
detection. In 2019 16th european radar conference
(EuRAD) (pp. 129-132). IEEE.
Wu, Z., Zhao, T., & Nguyen, C. (2020, November). 3D
reconstruction and object detection for HoloLens. In
2020 Digital Image Computing: Techniques and
Applications (DICTA) (pp. 1-2). IEEE.
Lei, J., Guo, T., Peng, B., & Yu, C. (2021, September).
Depth-Assisted Joint Detection Network For
Monocular 3d Object Detection. In 2021 IEEE
International Conference on Image Processing (ICIP)
(pp. 2204-2208). IEEE.
Muresan, M. P., Raul, M., Nedevschi, S., & Danescu, R.
(2021, October). Stereo and Mono Depth Estimation
Fusion for an Improved and Fault Tolerant 3D
Reconstruction. In 2021 IEEE 17th International
Conference on Intelligent Computer Communication
and Processing (ICCP) (pp. 233-240). IEEE.
Chen, X., Kundu, K., Zhu, Y., Ma, H., Fidler, S., &
Urtasun, R. (2017). 3d object proposals using stereo
imagery for accurate object class detection. IEEE
transactions on pattern analysis and machine
intelligence, 40(5), 1259-1272.
Navab, N., Unger, C. (2011). http://campar.in.tum.de/
twiki/pub/Chair/TeachingWs11Cv2/3D_CV2_WS_20
11_Stereo.pdf
Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J., &
Beijbom, O. (2019). Pointpillars: Fast encoders for
object detection from point clouds. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition (pp. 12697-12705).
Toker, O., & Alsweiss, S. (2020, March). mmWave radar
based approach for pedestrian identification in
autonomous vehicles. In 2020 SoutheastCon (pp. 1-2).
IEEE.
Chen, Q., Sun, L., Cheung, E., & Yuille, A. L. (2020).
Every view counts: Cross-view consistency in 3d object
detection with hybrid-cylindrical-spherical
voxelization. Advances in Neural Information
Processing Systems, 33, 21224-21235.
Shi, W., & Rajkumar, R. (2020). Point-gnn: Graph neural
network for 3d object detection in a point cloud. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (pp. 1711-1719).
Yang, B., Luo, W., & Urtasun, R. (2018). Pixor: Real-time
3d object detection from point clouds. In Proceedings
of the IEEE conference on Computer Vision and
Pattern Recognition (pp. 7652-7660).
Chu, P., Cho, S., Sim, S., Kwak, K., & Cho, K. (2017). A
fast ground segmentation method for 3D point cloud.
Journal of information processing systems, 13(3), 491-
499.
Kraemer, S., Stiller, C., & Bouzouraa, M. E. (2018,
October). LiDAR-based object tracking and shape
estimation using polylines and free-space information.
In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (pp. 4515-
4522). IEEE.
Oliveira, M., Santos, V., Sappa, A. D., & Dias, P. (2016).
Scene representations for autonomous driving: an
approach based on polygonal primitives. In Robot
2015: Second Iberian Robotics Conference (pp. 503-
515). Springer, Cham.
Oniga, F., & Nedevschi, S. (2009). Processing dense stereo
data using elevation maps: Road surface, traffic isle,
and obstacle detection. IEEE Transactions on Vehicular
Technology, 59(3), 1172-1182.
Muresan, M. P., Nedevschi, S., & Giosan, I. (2017,
September). Real-time object detection using a sparse
4-layer LIDAR. In 2017 13th IEEE International
Conference on Intelligent Computer Communication
and Processing (ICCP) (pp. 317-322). IEEE.
Zhou, Y., & Tuzel, O. (2018). Voxelnet: End-to-end
learning for point cloud based 3d object detection. In
Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 4490-4499).
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C. Y., & Berg, A. C. (2016, October). Ssd: Single
shot multibox detector. In European conference on
computer vision (pp. 21-37). Springer, Cham.
Chen, Y., Liu, S., Shen, X., & Jia, J. (2019). Fast point r-
cnn. In Proceedings of the IEEE/CVF international
conference on computer vision (pp. 9775-9784).
Yang, B., Liang, M., & Urtasun, R. (2018, October). Hdnet:
Exploiting hd maps for 3d object detection. In
Conference on Robot Learning (pp. 146-155). PMLR.
D. Deng, DBSCAN Clustering Algorithm Based on
Density, 2020 7th International Forum on Electrical
Engineering and Automation (IFEEA), 2020, pp. 949-
953
Velas, M.; Spanel, M.; Hradis, M.; Herout, A. CNN for
Very Fast Ground Segmentation in Velodyne LiDAR
Data. In Proceedings of the 2018 IEEE International
Conference on Autonomous Robot Systems and
Competitions (ICARSC), pp. 97–103.
Sun Z, Li Z, Liu Y (2020) An improved lidar data
segmentation algorithm based on euclidean clustering.
In: Proceedings of the 11th international conference on
modelling, identification and control, pp 1119–1130