REFERENCES
Abdel-Hamid, O., Mohamed, A., Jiang, H., and Penn, G.
(2012). Applying convolutional neural networks con-
cepts to hybrid NN-HMM model for speech recogni-
tion. In IEEE ICASSP.
Agic, Z. and Vulic, I. (2019). JW300: A wide-coverage
parallel corpus for low-resource languages. In ACL.
Baevski, A., Zhou, Y., Mohamed, A., and Auli, M. (2020).
wav2vec 2.0: A framework for self-supervised learn-
ing of speech representations. In NeurIPS.
Baldridge, J. (2004). Verbmobil: Foundations of Speech-to-
Speech Translation. Nat. Lang. Eng., 10(2).
Burga-Gutierrez, E., Vasquez-Chauca, B., and Ugarte, W.
(2020). Comparative analysis of question answering
models for HRI tasks with NAO in spanish. In SIM-
Big.
Chen, W. and Abdul-Mageed, M. (2022). Improv-
ing neural machine translation of indigenous lan-
guages with multilingual transfer learning. CoRR,
abs/2205.06993.
de Rivero, M., Tirado, C., and Ugarte, W. (2021). For-
malstyler: GPT based model for formal style trans-
fer based on formality and meaning preservation. In
KDIR.
Edgar, J., Mu
˜
noz, V., Antonio, J., Tello, C., Alexander, R.,
and Castro Mamani, R. (2012). Let’s speak quechua:
The implementation of a text-to-speech system for the
incas’ language. In IberSPEECH.
Haridas, A. V., Marimuthu, R., and Sivakumar, V. G.
(2018). A critical review and analysis on techniques
of speech recognition: The road ahead. Int. J. Knowl.
Based Intell. Eng. Syst., 22(1).
Hornberger, N. H. and Coronel-Molina, S. M. (2004).
Quechua language shift, maintenance, and revitaliza-
tion in the andes: the case for language planning.
International Journal of the Sociology of Language,
2004(167).
Jia, Y., Weiss, R. J., Biadsy, F., Macherey, W., Johnson, M.,
Chen, Z., and Wu, Y. (2019). Direct speech-to-speech
translation with a sequence-to-sequence model. In
ISCA INTERSPEECH.
Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T.,
Hoang, H., Heafield, K., Neckermann, T., Seide, F.,
Germann, U., Aji, A. F., Bogoychev, N., Martins, A.
F. T., and Birch, A. (2018). Marian: Fast neural ma-
chine translation in C++. In ACL.
Kano, T., Sakti, S., and Nakamura, S. (2020). End-to-
end speech translation with transcoding by multi-task
learning for distant language pairs. IEEE ACM Trans.
Audio Speech Lang. Process., 28.
LeCun, Y., Bengio, Y., and Hinton, G. E. (2015). Deep
learning. Nat., 521(7553).
Mager, M., Gutierrez-Vasques, X., Sierra, G., and Meza-
Ru
´
ız, I. V. (2018). Challenges of language technolo-
gies for the indigenous languages of the americas. In
ACL COLING.
Nayak, S., Baumann, T., Bhattacharya, S., Karakanta, A.,
Negri, M., and Turchi, M. (2020). See me speaking?
differentiating on whether words are spoken on screen
or off to optimize machine dubbing. In ACM ICMI
Companion.
Nguyen, T. Q. and Chiang, D. (2017). Transfer learning
across low-resource, related languages for neural ma-
chine translation. In AFNLP IJCNLP(2).
Nordhoff, S. and Hammarstr
¨
om, H. (2012). Glot-
tolog/langdoc: Increasing the visibility of grey liter-
ature for low-density languages. In ELRA LREC.
Oncevay, A. (2021). Peru is multilingual, its machine trans-
lation should be too. In Workshop on NLP for Indige-
nous Languages of the Americas. ACL.
Ortega, J. and Pillaipakkamnatt, K. (2018). Using mor-
phemes from agglutinative languages like quechua
and finnish to aid in low-resource translation. In
AMTA LoResMT@AMTA.
Papineni, K., Roukos, S., Ward, T., and Zhu, W. (2002).
Bleu: a method for automatic evaluation of machine
translation. In ACL.
Popovic, M. (2015). chrf: character n-gram f-score for au-
tomatic MT evaluation. In ACL WMT@EMNLP.
Rios, A. (2011). Spell checking an agglutinative language:
Quechua. In 5th Language and Technology Confer-
ence: Human Language Technologies as a Challenge
for Computer Science and Linguistics. Fundacja Uni-
wersytetu im. A. Mickiewicza.
Sumida Huaman, E. (2020). Small indigenous schools: In-
digenous resurgence and education in the americas.
Anthropology & Education Quarterly, 51(3).
Tiedemann, J. (2012). Parallel data, tools and interfaces in
OPUS. In ELRA LREC.
Tiedemann, J. and Thottingal, S. (2020). OPUS-MT - build-
ing open translation services for the world. In EAMT.
Tjandra, A., Sakti, S., and Nakamura, S. (2019). Speech-
to-speech translation between untranscribed unknown
languages. In IEEE ASRU.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. In NIPS.
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-
icz, M., Davison, J., Shleifer, S., von Platen, P., Ma,
C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger,
S., Drame, M., Lhoest, Q., and Rush, A. M. (2020).
Transformers: State-of-the-art natural language pro-
cessing. In ACL EMNLP (Demos).
Zhang, J. and Zong, C. (2020). Neural machine trans-
lation: Challenges, progress and future. CoRR,
abs/2004.05809.
Zoph, B., Yuret, D., May, J., and Knight, K. (2016). Trans-
fer learning for low-resource neural machine transla-
tion. In ACL EMNLP.
ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence
844