Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE.
Eppenhof, K. A., Lafarge, M. W., Veta, M., and Pluim,
J. P. (2019). Progressively trained convolutional neu-
ral networks for deformable image registration. IEEE
Transactions on Medical Imaging, 39(5):1594–1604.
Francis, A., Sidiropoulos, P., and Muller, J.-P. (2019).
CloudFCN: Accurate and Robust Cloud Detection for
Satellite Imagery with Deep Learning. Remote Sens-
ing, 11(19):2312.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
learning. MIT press.
Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew,
M. S. (2016). Deep learning for visual understanding:
A review. Neurocomputing, 187:27–48.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Ikeno, K., Fukuda, T., and Yabuki, N. (2021). An enhanced
3d model and generative adversarial network for au-
tomated generation of horizontal building mask im-
ages and cloudless aerial photographs. Advanced En-
gineering Informatics, 50:101380.
LeCun, Y., Bengio, Y., and Hinton, G. E. (2015). Deep
learning. Nature, 521(7553):436–444.
Li, X., Yang, X., Li, X., Lu, S., Ye, Y., and Ban, Y.
(2022). GCDB-UNet: A novel robust cloud detec-
tion approach for remote sensing images. Knowledge-
Based Systems, 238:107890.
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully con-
volutional networks for semantic segmentation. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 3431–3440.
Meraner, A., Ebel, P., Zhu, X. X., and Schmitt, M. (2020).
Cloud removal in sentinel-2 imagery using a deep
residual neural network and sar-optical data fusion.
ISPRS Journal of Photogrammetry and Remote Sens-
ing, 166:333–346.
Mohajerani, S., Krammer, T. A., and Saeedi, P. (2018a).
Cloud Detection Algorithm for Remote Sensing Im-
ages Using Fully Convolutional Neural Networks.
arXiv:1810.05782 [cs].
Mohajerani, S., Krammer, T. A., and Saeedi, P. (2018b).
Cloud detection algorithm for remote sensing im-
ages using fully convolutional neural networks. arXiv
preprint arXiv:1810.05782.
Mohajerani, S. and Saeedi, P. (2019a). Cloud-Net: An End-
To-End Cloud Detection Algorithm for Landsat 8 Im-
agery. In IGARSS 2019 - 2019 IEEE International
Geoscience and Remote Sensing Symposium, pages
1029–1032, Yokohama, Japan. IEEE.
Mohajerani, S. and Saeedi, P. (2019b). Cloud-net: An
end-to-end cloud detection algorithm for landsat 8 im-
agery. In IGARSS 2019-2019 IEEE International Geo-
science and Remote Sensing Symposium, pages 1029–
1032. IEEE.
Ponti, M. A., Ribeiro, L. S. F., Nazar
´
e, T. S., Bui, T.,
and Collomosse, J. (2017). Everything you wanted
to know about deep learning for computer vision but
were afraid to ask. In SIBGRAPI Tutorials, pages 17–
41. IEEE Computer Society.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer.
Siddiqi, A. A. (2000). Challenge to Apollo: the Soviet
Union and the space race, 1945-1974, volume 4408.
US National Aeronautics & Space Administration.
Silva, L. H. F. P., J
¨
unior, J. D. D., Mari, J. F., Escarpinati,
M. C., and Backes, A. R. (2022). Non-linear co-
registration in uavs’ images using deep learning. In
2022 35th SIBGRAPI Conference on Graphics, Pat-
terns and Images (SIBGRAPI), volume 1, pages 1–6.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Wang, C.-Y., Liao, H.-Y. M., Wu, Y.-H., Chen, P.-Y., Hsieh,
J.-W., and Yeh, I.-H. (2020). Cspnet: A new backbone
that can enhance learning capability of cnn. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition workshops, pages 390–
391.
Whitfield, S. J. (1996). The culture of the Cold War. JHU
Press.
Zhang, R., Du, L., Xiao, Q., and Liu, J. (2020). Comparison
of backbones for semantic segmentation network. In
Journal of Physics: Conference Series, volume 1544,
page 012196. IOP Publishing.
Zhu, Z., Wang, S., and Woodcock, C. E. (2015). Improve-
ment and expansion of the fmask algorithm: Cloud,
cloud shadow, and snow detection for landsats 4–7,
8, and sentinel 2 images. Remote sensing of Environ-
ment, 159:269–277.
VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications
458