Garrido-Jurado, S., Mu
˜
noz Salinas, R., Madrid-Cuevas, F.,
and Mar
´
ın-Jim
´
enez, M. (2014). Automatic generation
and detection of highly reliable fiducial markers under
occlusion. Pattern Recognition, 47(6):2280–2292.
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. (2017).
Mask R-CNN. In IEEE International Conference on
Computer Vision (ICCV), pages 2980–2988.
He, Y., Huang, H., Fan, H., Chen, Q., and Sun, J. (2021a).
FFB6D: A full flow bidirectional fusion network for
6D pose estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 3003–3013.
He, Z., Feng, W., Zhao, X., and Lv, Y. (2021b). 6D pose
estimation of objects: Recent technologies and chal-
lenges. Applied Sciences, 11(1):228.
Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski,
G., Konolige, K., and Navab, N. (2012). Model based
training, detection and pose estimation of texture-less
3D objects in heavily cluttered scenes. In Asian Conf.
on Computer Vision, pages 548–562. Springer.
Hoda
ˇ
n, T., Bar
´
ath, D., and Matas, J. (2020a). EPOS: Es-
timating 6D pose of objects with symmetries. IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR).
Hodan, T., Haluza, P., Obdr
ˇ
z
´
alek,
ˇ
S., Matas, J., Lourakis,
M., and Zabulis, X. (2017). T-LESS: An RGB-D
dataset for 6D pose estimation of texture-less objects.
In 2017 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 880–888. IEEE.
Hoda
ˇ
n, T., Sundermeyer, M., Drost, B., Labb
´
e, Y., Brach-
mann, E., Michel, F., Rother, C., and Matas, J.
(2020b). BOP challenge 2020 on 6D object localiza-
tion. In European Conference on Computer Vision,
pages 577–594. Springer.
Hu, H., Zhu, M., Li, M., and Chan, K.-L. (2022). Deep
learning-based monocular 3D object detection with
refinement of depth information. Sensors, 22(7).
Huynh, D. Q. (2009). Metrics for 3D rotations: Comparison
and analysis. J. Math. Imaging Vis., 35(2):155–164.
Jiang, X., Li, D., Chen, H., Zheng, Y., Zhao, R., and Wu,
L. (2022). Uni6D: A unified CNN framework without
projection breakdown for 6D pose estimation. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11174–11184.
Kim, S.-h. and Hwang, Y. (2021). A survey on deep learn-
ing based methods and datasets for monocular 3D ob-
ject detection. Electronics, 10(4):517.
Kneip, L., Scaramuzza, D., and Siegwart, R. (2011). A
novel parametrization of the perspective-three-point
problem for a direct computation of absolute camera
position and orientation. In CVPR 2011, pages 2969–
2976. IEEE.
Labbe, Y., Carpentier, J., Aubry, M., and Sivic, J. (2020).
CosyPose: Consistent multi-view multi-object 6D
pose estimation. In Proceedings of the European Con-
ference on Computer Vision (ECCV).
Lepetit, V. and Fua, P. (2005). Monocular model-based 3D
tracking of rigid objects: A survey. Foundations and
Trends in Computer Graphics and Vision, 1(1).
Lepetit, V., Moreno-Noguer, F., and Fua, P. (2009). EPnP:
An accurate O(n) solution to the PnP problem. Inter-
national journal of computer vision, 81(2):155.
Lourakis, M. (2004). levmar: Levenberg-Marquardt non-
linear least squares algorithms in C/C++. [web page]
http://www.ics.forth.gr/
∼
lourakis/levmar/.
Lourakis, M. and Pateraki, M. (2021). Markerless visual
tracking of a container crane spreader. In IEEE/CVF
International Conference on Computer Vision Work-
shops (ICCVW), pages 2579–2586.
Lourakis, M. and Pateraki, M. (2022a). Computer vision
for increasing safety in container handling operations.
In Human Factors and Systems Interaction, Interna-
tional Conference on Applied Human Factors and Er-
gonomics (AHFE), volume 52.
Lourakis, M. and Pateraki, M. (2022b). Container spreader
pose tracking dataset. Zenodo, https://doi.org/10.
5281/zenodo.7043890.
Lourakis, M., Pateraki, M., Karolos, I.-A., Pikridas, C., and
Patias, P. (2020). Pose estimation of a moving camera
with low-cost, multi-GNSS devices. Int. Arch. Pho-
togramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-
2020:55–62.
Marchand, E., Uchiyama, H., and Spindler, F. (2016). Pose
estimation for augmented reality: A hands-on sur-
vey. IEEE Transactions on Visualization and Com-
puter Graphics, 22(12):2633–2651.
Ngo, Q. H. and Hong, K.-S. (2012). Sliding-
Mode Antisway Control of an Offshore Container
Crane. IEEE/ASME Transactions on Mechatronics,
17(2):201–209.
Rahman, M. M., Tan, Y., Xue, J., and Lu, K. (2019). Recent
advances in 3D object detection in the era of deep neu-
ral networks: A survey. IEEE Transactions on Image
Processing, 29:2947–2962.
Sahin, C. and Kim, T.-K. (2018). Recovering 6D object
pose: a review and multi-modal analysis. In Proceed-
ings of the European Conference on Computer Vision
(ECCV) Workshops, pages 0–0.
Sun, J., Wang, Z., Zhang, S., He, X., Zhao, H., Zhang, G.,
and Zhou, X. (2022). OnePose: One-shot object pose
estimation without CAD models. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 6815–6824.
van Ham, H., van Ham, J., and Rijsenbrij, J. (2012). Devel-
opment of Containerization: Success Through Vision,
Drive and Technology. IOS Press.
Wang, B., Zhong, F., and Qin, X. (2019). Robust
edge-based 3D object tracking with direction-based
pose validation. Multimedia Tools and Applications,
78(9):12307–12331.
Wang, G., Manhardt, F., Shao, J., Ji, X., Navab, N., and
Tombari, F. (2020). Self6D: Self-supervised monoc-
ular 6D object pose estimation. In European Con-
ference on Computer Vision (ECCV), pages 108–125,
Cham. Springer International Publishing.
Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Gir-
shick, R. (2019). Detectron2. https://github.com/
facebookresearch/detectron2.
Crane Spreader Pose Estimation from a Single View
805