Jocher, G. R., Stoken, A., and Chaurasia, A. (2021a). ul-
tralytics/yolov5: v4.0 - nn.silu() activations. https:
//zenodo.org/record/4418161. Accessed: 2022-11-10.
Jocher, G. R., Stoken, A., and Chaurasia, A. (2021b). ultr-
alytics/yolov5: v6.0 - yolov5n ’nano’ models. https:
//zenodo.org/record/5563715. Accessed: 2022-11-10.
Jocher, G. R., Stoken, A., and Chaurasia, A. (2022a). ul-
tralytics/yolov5: v6.1 - tensorrt, tensorflow edge tpu
and openvino export and inference — zenodo. https:
//zenodo.org/record/6222936.Y3t3Q3bP3IU. Ac-
cessed: 2022-11-10.
Jocher, G. R., Stoken, A., and Chaurasia, A. (2022b).
Yolov5 classification models, apple m1, reproducibil-
ity, clearml and deci.ai integrations. https://zenodo.
org/record/7002879.Y3t3P3b7TIV. Accessed: 2022-
11-10.
Kalamatianos, R., Karydis, I., Doukakis, D., and Avlonitis,
M. (2018). Dirt: The dacus image recognition toolkit.
Journal of Imaging, 4(11):129.
Li, K., Zhu, J., and Li, N. (2021a). Insect detection and
counting based on yolov3 model. In 2021 IEEE 4th
International Conference on Electronics Technology
(ICET), pages 1229–1233. IEEE.
Li, K., Zhu, J., and Li, N. (2021b). Lightweight auto-
matic identification and location detection model of
farmland pests. Wireless Communications and Mobile
Computing, 2021.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.
Liu, Q., Yan, Z., Wang, F., and Ding, C. (2021). Research
on object detection algorithm for small object of pests
based on yolov3. In 2021 International Conference
on Computer Information Science and Artificial Intel-
ligence (CISAI), pages 14–18.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In European conference on com-
puter vision, pages 21–37. Springer.
Ma, N., Zhang, X., Zheng, H., and Sun, J. (2018). Shuf-
flenet v2: Practical guidelines for efficient cnn archi-
tecture design. In ECCV, volume 11218, pages 122–
138. Springer.
Mamdouh, N. and Khattab, A. (2021). Yolo-based deep
learning framework for olive fruit fly detection and
counting. IEEE Access, 9:84252–84262.
Patel, D. J. and Bhatt, N. (2019). Insect identification
among deep learning’s meta-architectures using ten-
sorflow. Int. J. Eng. Adv. Technol, 9(1):1910–1914.
Qi, D., Tan, W., Yao, Q., and Liu, J. (2021). Yolo5face:
Why reinventing a face detector. ArXiv preprint
ArXiv:2105.12931.
Qian, Y., Miao, Y., Huang, S., Qiao, X., Wang, M., Li, Y.,
Luo, L., Zhao, X., and Cao, L. (2022). Real-time
detection of eichhornia crassipes based on efficient
yolov5. Machines, 10(9):754.
Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., and
Doll
´
ar, P. (2020). Designing network design spaces.
In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 10428–
10436.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. ArXiv, abs/1804.02767.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residu-
als and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4510–4520.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
(2017). Inception-v4, inception-resnet and the im-
pact of residual connections on learning. In Thirty-
first AAAI conference on artificial intelligence, pages
4278—-4284. ACM.
Takimoto, H., Sato, Y., Nagano, A. J., Shimizu, K. K.,
and Kanagawa, A. (2021). Using a two-stage con-
volutional neural network to rapidly identify tiny her-
bivorous beetles in the field. Ecological Informatics,
66:101466.
Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model
scaling for convolutional neural networks. In Interna-
tional conference on machine learning, pages 6105–
6114. PMLR.
Teng, Y., Zhang, J., Dong, S., Zheng, S., and Liu, L. (2022).
Msr-rcnn: A multi-class crop pest detection network
based on a multi-scale super-resolution feature en-
hancement module. Frontiers in Plant Science, 13.
Tresson, P., Tixier, P., Puech, W., and Carval, D. (2019).
Insect interaction analysis based on object detection
and cnn. In 2019 IEEE 21st International Workshop
on Multimedia Signal Processing (MMSP), pages 1–6.
IEEE.
Veit, A., Wilber, M. J., and Belongie, S. (2016). Residual
networks behave like ensembles of relatively shallow
networks. Advances in neural information processing
systems, 29.
Yang, Z., Yang, X., Li, M., and Li, W. (2021). Automated
garden-insect recognition using improved lightweight
convolution network. Information Processing in Agri-
culture.
Yuan, Z., Fang, W., Zhao, Y., and Sheng, V. S. (2021).
Research of insect recognition based on improved
yolov5. Journal of Artificial Intelligence, 3(4):145.
Zha, M., Qian, W., Yi, W., and Hua, J. (2021). A lightweight
yolov4-based forestry pest detection method using
coordinate attention and feature fusion. Entropy,
23(12):1587.
Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018).
Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–
8710.
ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence
342