biometric data in accordance with location
information. The proposed approach creates real-
time trajectories of moving objects that are in panic
state and analyzes them to come up with the detection
of potential crowd panic event areas. Future work
includes the examination of alternative classification
strategies that would increase the panic state
determination accuracy as well as the extension of the
real-time analysis model in order to efficiently
process simultaneously appearing panic events in
spatially distributed groups of subjects.
REFERENCES
Alsalat, G. Y., El-Ramly, M., Fahmy, A. A., & Karim, S.
(2018). Detection of Mass Panic using Internet of
Things and Machine Learning. International Journal of
Advanced Computer Science and Applications, 9(5).
Ammar, H.; Cherif, A. DeepROD: A deep learning
approach for real-time and online detection of a panic
behavior in human crowds. Mach. Vis. Appl. 2021, 32,
57. https://doi.org/10.1007/s00138-021-01182-w.
Andrulis, D. P., Siddiqui, N. J., & Purtle, J. P. (2011).
Integrating racially and ethnically diverse communities
into planning for disasters: the California
experience. Disaster Medicine and Public Health
Preparedness, 5(3), 227-234.
Bui, T.; Sankaran, S. Foundations for Designing Global
Emergency Response Systems (ERS). In Proceedings
of the 3rd International ISCRAM Conference, Newark,
NJ, USA, 13–17 May 2006; pp. 72–81.
Centers for Disease Control Website. Target Heart Rate and
Estimated Maximum Heart Rate. Available online:
https://www.cdc.gov/physicalactivity/basics/measurin
g/heartrate.htm (accessed on 10 August 2022).
Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working
guide to boosted regression trees. Journal of Animal
Ecology, 77(4), 802–813. https://doi.org/10.1111/
j.1365-2656.2008.01390.x
Forbes Health, https://www.forbes.com/health/healthy-
aging/normal-heart-rate-by-age/ (accessed on 10
August 2022).
Hao, Y.; Xu, Z.; Wang, J.; Liu, Y.; Fan, J. An Approach to
Detect Crowd Panic Behavior using Flow-based
Feature. In Proceedings of the 22nd International
Conference on Automation and Computing, Colchester,
UK, 7–8 September 2016; ISBN 9781862181328.
https://doi.org/10.1109/iconac.2016.7604963.
Helbing, D.; Farkas, I.; Vicsek, T. Simulating dynamical
features of escape panic. Nature 2000, 407, 487–490.
https://doi.org/10.1038/35035023.
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013).
Applied Logistic Regression. Wiley Series in
Probability and Statistics. https://doi.org/10.1002/
9781118548387
Keerthi, S. S., & Lin, C.-J. (2003). Asymptotic Behaviors
of Support Vector Machines with Gaussian Kernel.
Neural Computation, 15(7), 1667–1689. https://
doi.org/10.1162/089976603321891855
Kumar, A. (2012). Panic detection in human crowds using
sparse coding (Master's thesis, University of Waterloo).
Kutsarova, V., & Matskin, M. (2021, July). Combining
Mobile Crowdsensing and Wearable Devices for
Managing Alarming Situations. In 2021 IEEE 45th
Annual Computers, Software, and Applications
Conference (COMPSAC) (pp. 538-543). IEEE.
Lazarou, I., Kesidis, A. L., Hloupis, G., & Tsatsaris, A.
(2022). Panic Detection Using Machine Learning and
Real-Time Biometric and Spatiotemporal Data. ISPRS
International Journal of Geo-Information, 11(11), 552.
Li, L. Education supply chain in the era of Industry 4.0.
Syst. Res. Behav. Sci. 2020, 37, 579–592.
https://doi.org/10.1002/sres.2702.
Li, N.; Sun, M.; Bi, Z.; Su, Z.; Wang, C. A new
methodology to support group decision-making for
IoT-based emergency response systems. Inf. Syst.
Front. 2014, 16, 953–977. https://doi.org/10.1007/s10
796-013-9407-z.
Lin, Y.; Duan, X.; Zhao, C.; Xu, L. Systems Science
Methodological Approaches; CRC Press: Boca Raton,
FL, USA; Taylor & Francis: Abingdon, UK, 2012;
ISBN 978-1-4398-9551-1.
Lin, P., Ma, J., & Lo, S. (2016). Discrete element crowd
model for pedestrian evacuation through an exit.
Chinese Physics B, 25(3), 034501.
Loh, W.-Y. (2014). Fifty Years of Classification and
Regression Trees. International Statistical Review,
82(3), 329–348. https://doi.org/10.1111/insr.12016
Ren, J., Lee, S. D., Chen, X., Kao, B., Cheng, R., & Cheung,
D. (2009). Naive Bayes Classification of Uncertain
Data. 2009 Ninth IEEE International Conference on
Data Mining. https://doi.org/10.1109/icdm.2009.90
Sufri, S., Dwirahmadi, F., Phung, D., & Rutherford, S.
(2020). A systematic review of community engagement
(CE) in disaster early warning systems (EWSs).
Progress in Disaster Science, 5, 100058.
Tsai, C. H., Chen, P. C., Liu, D. S., Kuo, Y. Y., Hsieh, T.
T., Chiang, D. L., ... & Wu, C. T. (2022). Panic Attack
Prediction Using Wearable Devices and Machine
Learning: Development and Cohort Study. JMIR
Medical Informatics, 10(2), e33063.
Xu, L. Introduction: Systems science in industrial sectors.
Syst. Res. Behav. Sci. 2013, 30, 211–213.
Xu, L.; Cai, L.; Zhao, S.; Ge, B. Editorial: Inaugural Issue.
J. Ind. Integr. Manag. 2016, 1, 1601001.
https://doi.org/10.1142/s2424862216010016.
Xu, L.D. The contribution of systems science to Industry
4.0. Syst. Res. Behav. Sci. 2020, 37, 618–631.