Bl
¨
asius, T., Friedrich, T., and Weyand, C. (2021). Ef-
ficiently Computing Maximum Flows in Scale-Free
Networks. In ESA 2021.
Bose, K., Kundu, M. K., Adhikary, R., and Sau, B. (2020).
Distributed localization of wireless sensor network us-
ing communication wheel. In ALGOSENSORS, pages
17–31.
Brise, Y., Buchin, K., Eversmann, D., Hoffmann, M.,
and Mulzer, W. (2014). Interference minimization
in asymmetric sensor networks. In ALGOSENSORS,
pages 136–151.
Buchin, K. (2008). Minimizing the maximum interference
is hard. CoRR, abs/0802.2134.
Chaporkar, P., Kar, K., Luo, X., and Sarkar, S. (2008).
Throughput and fairness guarantees through maximal
scheduling in wireless networks. IEEE Transactions
on Information theory, 54(2):572–594.
Cor
`
o, F., D’Angelo, G., and Pinotti, C. M. (2019). On the
maximum connectivity improvement problem. In AL-
GOSENSORS, pages 47–61.
Danilchenko, K., Segal, M., and Nutov, Z. (2020). Covering
users by a connected swarm efficiently. In ALGOSEN-
SORS, pages 32–44.
de Berg, M., Carstens, C. J., and Mandjes, M. (2019).
Throughput and packet displacements of dynamic
broadcasting algorithms. In ALGOSENSORS, pages
158–174.
Deng, K., Yu, G., and Zhou, X. (2019). Recent progress on
strong edge-coloring of graphs. Discrete Mathemat-
ics, Algorithms and Applications, 11(05):1950062.
Ding, L., Wu, W., Willson, J., Du, H., Lee, W., and Du, D.-
Z. (2011). Efficient algorithms for topology control
problem with routing cost constraints in wireless net-
works. IEEE Transactions on Parallel and Distributed
Systems, 22(10):1601–1609.
Du, D.-Z. and Wan, P.-J. (2013). Routing-cost constrained
cds. In Connected Dominating Set: Theory and Ap-
plications, pages 119–131.
Esperet, L., Julliot, S., and de Mesmay, A. (2021). Dis-
tributed coloring and the local structure of unit-disk
graphs. In ALGOSENSORS, pages 61–75.
Eswaran, K. P. and Tarjan, R. E. (1976). Augmentation
problems. SIAM Journal on Computing, 5(4):653–
665.
Friis, H. (1946). A note on a simple transmission formula.
Proc. of the IRE, 34(5):254–256.
Fussen, M., Wattenhofer, R., and Zollinger, A. (2005). In-
terference arises at the receiver. In WiMob 2005, vol-
ume 1, pages 427–432.
Galesi, N., Ranjbar, F., and Zito, M. (2019). Vertex-
connectivity for node failure identification in boolean
network tomography. In ALGOSENSORS, pages 79–
95.
Ghaffari, M. and Kuhn, F. (2022). Deterministic distributed
vertex coloring: Simpler, faster, and without network
decomposition. In 2021 IEEE 62nd Annual Sympo-
sium on FOCS, pages 1009–1020.
G
¨
otte, T., Kolb, C., Scheideler, C., and Werthmann, J.
(2021). Beep-and-sleep: Message and energy efficient
set cover. In ALGOSENSORS, pages 94–110.
Gray, C., Mosig, C., Bush, R., Pelsser, C., Roughan, M.,
Schmidt, T. C., and Wahlisch, M. (2020). Bgp bea-
cons, network tomography, and bayesian computation
to locate route flap damping. In Proc. of the ACM In-
ternet Measurement Conference, pages 492–505.
Guha, S. and Khuller, S. (1998). Approximation algo-
rithms for connected dominating sets. Algorithmica,
20(4):374–387.
Hal
´
asz, G. and S
´
os, V. T. (1989). Irregularities of Partitions,
chapter ”Problems”, pages 161–165. Springer.
Halld
´
orsson, M. M. and Tokuyama, T. (2008). Minimizing
interference of a wireless ad-hoc network in a plane.
Theoretical Computer Science, 402(1):29–42.
Hanschke, L. and Renner, C. (2019). Time- and energy-
aware task scheduling in environmentally-powered
sensor networks. In ALGOSENSORS, pages 131–144.
Holyer, I. (1981). The np-completeness of edge-coloring.
SIAM Journal on computing, 10(4):718–720.
Ikpehai, A., Adebisi, B., Rabie, K. M., Anoh, K., Ande,
R. E., Hammoudeh, M., Gacanin, H., and Mbanaso,
U. M. (2019). Low-Power Wide Area Network Tech-
nologies for Internet-of-Things: A Comparative Re-
view. IEEE Internet of Things Journal, 6(2):2225–
2240.
Ji, X. and Zha, H. (2004). Sensor positioning in wireless
ad-hoc sensor networks using multidimensional scal-
ing. In IEEE INFOCOM 2004, volume 4, pages 2652–
2661.
Jia, L., Rajaraman, R., and Suel, T. (2002). An efficient dis-
tributed algorithm for constructing small dominating
sets. Distributed Computing, 15(4):193–205.
Jin, K., Li, J., Wang, H., Zhang, B., and Zhang, N. (2018).
Near-linear time approximation schemes for geomet-
ric maximum coverage. Theoretical Computer Sci-
ence, 725:64–78.
Jung, D., Kolb, C., Scheideler, C., and Sundermeier, J.
(2019). Competitive routing in hybrid communication
networks. In ALGOSENSORS, pages 15–31.
Kakkavas, G., Gkatzioura, D., Karyotis, V., and Papavas-
siliou, S. (2020). A review of advanced algebraic ap-
proaches enabling network tomography for future net-
work infrastructures. Future Internet, 12(2):20.
Kann, V. (1992). On the approximability of NP-complete
optimization problems. PhD thesis, Royal Institute of
Technology Stockholm.
Karakostas, G. and Kolliopoulos, S. G. (2022). Resource
time-sharing for iot applications with deadlines. In
ALGOSENSORS, pages 131–144.
Khuller, S., Purohit, M., and Sarpatwar, K. K. (2014). Ana-
lyzing the optimal neighborhood: Algorithms for bud-
geted and partial connected dominating set problems.
In Proc. of the 25th annual ACM-SIAM SODA, pages
1702–1713.
Kuhn, F., Moscibroda, T., and Wattenhofer, R. (2006). The
price of being near-sighted. In Proc. of the 17th An-
nual ACM-SIAM SODA, page 980–989.
Kuhn, F. and Wattenhofer, R. (2003). Constant-time dis-
tributed dominating set approximation. In Proc. of the
22nd ACM PODC, pages 25–32.
SENSORNETS 2023 - 12th International Conference on Sensor Networks
110