He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
recognition, pages 770–778.
Ilyas, C. M. A., Nunes, R., Nasrollahi, K., Rehm, M., and
Moeslund, T. B. (2021). Deep emotion recognition
through upper body movements and facial expression.
In VISIGRAPP (5: VISAPP), pages 669–679.
Jones, R. (2013). Communication in the real world: An
introduction to communication studies. The Saylor
Foundation.
Laban, R. and Ullmann, L. (1971). The mastery of move-
ment. ERIC.
Lin, T., Wang, Y., Liu, X., and Qiu, X. (2022). A survey of
transformers. AI Open.
Loshchilov, I. and Hutter, F. (2017). Decoupled weight de-
cay regularization. arXiv preprint arXiv:1711.05101.
Luo, Y., Gavrilova, M. L., and Wang, P. S. (2008). Facial
metamorphosis using geometrical methods for bio-
metric applications. International Journal of Pattern
Recognition and Artificial Intelligence, 22(03):555–
584.
Luo, Y., Ye, J., Adams, R. B., Li, J., Newman, M. G., and
Wang, J. Z. (2020). Arbee: Towards automated recog-
nition of bodily expression of emotion in the wild. In-
ternational Journal of Computer Vision, 128(1):1–25.
Ly, S. T., Lee, G.-S., Kim, S.-H., and Yang, H.-J. (2018).
Emotion recognition via body gesture: Deep learning
model coupled with keyframe selection. In Proceed-
ings of the 2018 International Conference on Machine
Learning and Machine Intelligence, pages 27–31.
Maret, Y., Oberson, D., and Gavrilova, M. (2018). Real-
time embedded system for gesture recognition. In
2018 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 30–34. IEEE.
Menolotto, M., Komaris, D.-S., Tedesco, S., O’Flynn, B.,
and Walsh, M. (2020). Motion capture technology in
industrial applications: A systematic review. Sensors,
20(19):5687.
Noroozi, F., Corneanu, C. A., Kami
´
nska, D., Sapi
´
nski, T.,
Escalera, S., and Anbarjafari, G. (2018). Survey on
emotional body gesture recognition. IEEE Transac-
tions on Affective Computing, 12(2):505–523.
Rahman, M. W. and Gavrilova, M. L. (2017). Kinect gait
skeletal joint feature-based person identification. In
2017 IEEE 16th International Conference on Cogni-
tive Informatics & Cognitive Computing (ICCI* CC),
pages 423–430. IEEE.
Shen, Z., Cheng, J., Hu, X., and Dong, Q. (2019). Emo-
tion recognition based on multi-view body gestures.
In 2019 IEEE International Conference on Image Pro-
cessing (ICIP), pages 3317–3321. IEEE.
Song, L., Yu, G., Yuan, J., and Liu, Z. (2021). Human pose
estimation and its application to action recognition: A
survey. Journal of Visual Communication and Image
Representation, 76:103055.
Sun, B., Cao, S., He, J., and Yu, L. (2018). Affect recog-
nition from facial movements and body gestures by
hierarchical deep spatio-temporal features and fusion
strategy. Neural Networks, 105:36–51.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. Advances in neural
information processing systems, 30.
Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X.,
and Gool, L. V. (2016). Temporal segment networks:
Towards good practices for deep action recognition.
In European Conference on Computer Vision, pages
20–36. Springer.
Yan, J., Lu, G., Bai, X., Li, H., Sun, N., and Liang,
R. (2018a). A novel supervised bimodal emotion
recognition approach based on facial expression and
body gesture. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sci-
ences, 101(11):2003–2006.
Yan, S., Xiong, Y., and Lin, D. (2018b). Spatial temporal
graph convolutional networks for skeleton-based ac-
tion recognition. In Thirty-second AAAI conference
on artificial intelligence.
Yang, Z., Kay, A., Li, Y., Cross, W., and Luo, J. (2021).
Pose-based body language recognition for emotion
and psychiatric symptom interpretation. In 2020
25th International Conference on Pattern Recognition
(ICPR), pages 294–301. IEEE.
Emotion Transformer: Attention Model for Pose-Based Emotion Recognition
281