Montminy, E. M., Jang, A., Conner, M., & Karlitz, J. J.
(2020). Screening for Colorectal Cancer. Medical
Clinics of North America, 104(6), 1023–1036.
https://doi.org/10.1016/j.mcna.2020.08.004
Mori, Y., Kudo, S., Berzin, T., Misawa, M., & Takeda, K.
(2017). Computer-aided diagnosis for colonoscopy.
Endoscopy, 49(08), 813–819. https://doi.org/10.1055/
s-0043-109430
Murakami, D., Yamato, M., Amano, Y., & Tada, T. (2021).
Challenging detection of hard-to-find gastric cancers
with artificial intelligence-assisted endoscopy. Gut,
70(6), 1196–1198. https://doi.org/10.1136/gutjnl-2020-
322453
Pacal, I., & Karaboga, D. (2021). A robust real-time deep
learning based automatic polyp detection system.
Computers in Biology and Medicine, 134, 104519.
https://doi.org/10.1016/j.compbiomed.2021.104519
Quan, S. Y., Wei, M. T., Lee, J., Mohi-Ud-Din, R.,
Mostaghim, R., Sachdev, R., Siegel, D., Friedlander,
Y., & Friedland, S. (2022). Clinical evaluation of a real-
time artificial intelligence-based polyp detection
system: A US multi-center pilot study. Scientific
Reports, 12(1), 6598. https://doi.org/10.1038/s41598-
022-10597-y
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016).
You Only Look Once: Unified, Real-Time Object
Detection (arXiv:1506.02640). arXiv. http://arxiv.
org/abs/1506.02640
Redmon, J., & Farhadi, A. (2017). YOLO9000: Better,
Faster, Stronger. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 6517–6525.
https://doi.org/10.1109/CVPR.2017.690
Redmon, J., & Farhadi, A. (2018). YOLOv3: An
Incremental Improvement (arXiv:1804.02767). arXiv.
http://arxiv.org/abs/1804.02767
Sharma, V., & Mir, R. N. (2020). A comprehensive and
systematic look up into deep learning based object
detection techniques: A review. Computer Science
Review, 38, 100301. https://doi.org/10.1016/
j.cosrev.2020.100301
Shaukat, A., Kaltenbach, T., Dominitz, J. A., Robertson, D.
J., Anderson, J. C., Cruise, M., Burke, C. A., Gupta, S.,
Lieberman, D., Syngal, S., & Rex, D. K. (2020).
Endoscopic Recognition and Management Strategies
for Malignant Colorectal Polyps: Recommendations of
the US Multi-Society Task Force on Colorectal Cancer.
Gastroenterology, 159(5), 1916-1934.e2. https://doi.
org/10.1053/j.gastro.2020.08.050
Shen, Z., Lin, C., & Zheng, S. (2021). COTR: Convolution
in Transformer Network for End to End Polyp
Detection (arXiv:2105.10925). arXiv. http://arxiv.org/
abs/2105.10925
Srivastava, S., Divekar, A. V., Anilkumar, C., Naik, I.,
Kulkarni, V., & Pattabiraman, V. (2021). Comparative
analysis of deep learning image detection algorithms.
Journal of Big Data, 8(1), 66. https://doi.
org/10.1186/s40537-021-00434-w
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M.,
Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global
Cancer Statistics 2020: GLOBOCAN Estimates of
Incidence and Mortality Worldwide for 36 Cancers in
185 Countries. CA: A Cancer Journal for Clinicians,
71(3), 209–249. https://doi.org/10.3322/caac.21660
Ultralytics/yolov5. (2022). [Python]. Ultralytics. https://
github.com/ultralytics/yolov5 (Original work published
2020)
van der Sommen, F., de Groof, J., Struyvenberg, M., van
der Putten, J., Boers, T., Fockens, K., Schoon, E. J.,
Curvers, W., de With, P., Mori, Y., Byrne, M., &
Bergman, J. J. G. H. M. (2020). Machine learning in GI
endoscopy: Practical guidance in how to interpret a
novel field. Gut, 69(11), 2035–2045. https://doi.
org/10.1136/gutjnl-2019-320466
Wan, J., Chen, B., & Yu, Y. (2021). Polyp Detection from
Colorectum Images by Using Attentive YOLOv5.
Diagnostics, 11(12), 2264. https://doi.org/10.3390/
diagnostics11122264