Caseneuve, G., Valova, I., LeBlanc, N., & Thibodeau, M.
(2021). Chest X-Ray Image Preprocessing for Disease
Classification. Procedia Computer Science, 192, 658-
665.
Khan, W., Zaki, N., & Ali, L. (2021). Intelligent pneumonia
identification from chest x-rays: A systematic literature
review. IEEE Access, 9, 51747-51771.
Çallı, E., Sogancioglu, E., van Ginneken, B., van Leeuwen,
K. G., & Murphy, K. (2021). Deep learning for chest X-
ray analysis: A survey. Medical Image Analysis, 72,
102125.
Li, Y., Zhang, Z., Dai, C., Dong, Q., & Badrigilan, S.
(2020). Accuracy of deep learning for automated
detection of pneumonia using chest X-ray images: a
systematic review and meta-analysis. Computers in
Biology and Medicine, 123, 103898.
Ayan, E., & Ünver, H. M. (2019, April). Diagnosis of
pneumonia from chest X-ray images using deep
learning. In 2019 Scientific Meeting on Electrical-
Electronics & Biomedical Engineering and Computer
Science (EBBT) (pp. 1-5). Ieee.
Sharma, H., Jain, J. S., Bansal, P., & Gupta, S. (2020,
January). Feature extraction and classification of chest
x-ray images using cnn to detect pneumonia. In 2020
10th International Conference on Cloud Computing,
Data Science & Engineering (Confluence) (pp. 227-
231). IEEE.
Kermany, D., Zhang, K. G. M., & Goldbaum, M. Large
dataset of labeled optical coherence tomography (OCT)
and chest x-ray images, Mendeley data, v3 (2018).
Hammoudi, K., Benhabiles, H., Melkemi, M., Dornaika, F.,
Arganda-Carreras, I., Collard, D., & Scherpereel, A.
(2021). Deep learning on chest X-ray images to detect
and evaluate pneumonia cases at the era of COVID-19.
Journal of medical systems, 45(7), 1-10.
Mabrouk, A., Díaz Redondo, R. P., Dahou, A., Abd Elaziz,
M., & Kayed, M. (2022). Pneumonia Detection on
Chest X-ray Images Using Ensemble of Deep
Convolutional Neural Networks. Applied Sciences,
12(13), 6448.
Kundu, R., Das, R., Geem, Z. W., Han, G. T., & Sarkar, R.
(2021). Pneumonia detection in chest X-ray images
using an ensemble of deep learning models. Plos one,
16(9), e0256630.
Chouhan, V., Singh, S. K., Khamparia, A., Gupta, D.,
Tiwari, P., Moreira, C., ... & De Albuquerque, V. H. C.
(2020). A novel transfer learning based approach for
pneumonia detection in chest X-ray images. Applied
Sciences, 10(2), 559.
Zhang, Dejun, Fuquan Ren, Yushuang Li, Lei Na, and Yue
Ma. "Pneumonia detection from chest X-ray images
based on convolutional neural network." Electronics
10, no. 13 (2021): 1512.
Tan, P. N., Steinbach, M., & Kumar, V. (2019).
Introduction to data mining. Pearson Education India,
2
nd
ed.
Landau, S., Leese, M., Stahl, D., & Everitt, B. S. (2011).
Cluster analysis. John Wiley & Sons, 5
th
ed.
Wierzchoń, S. T., & Kłopotek, M. A. (2018). Modern
algorithms of cluster analysis (Vol. 34). Springer
International Publishing.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern
recognition (pp. 770-778).
Simonyan, K., & Zisserman, A. (2014). Very deep
convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna,
Z. (2016). Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition
(pp. 2818-2826).
Chollet, F. (2017). Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition
(pp. 1251-1258).
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K.
Q. (2017). Densely connected convolutional networks.
In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 4700-4708).
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen,
L. C. (2018). Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 4510-
4520).
Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet:
An extremely efficient convolutional neural network
for mobile devices. In Proceedings of the IEEE
conference on computer vision and pattern recognition
(pp. 6848-6856).