(2015). Early detection of cardiovascular disease
with photoplethysmogram (ppg) sensor. In 2015
International Conference on Electrical E ngineering
and Informatics (ICEEI), pages 676–681. IEEE.
Deaton, C., Froelicher, E. S., Wu, L. H., Ho, C., Shishani,
K., and Jaarsma, T. (2011). The global burden
of cardiovascular disease. European Journal of
Cardiovascular Nursing, 10(2
suppl):S5–S13.
Golany, T., Freedman, D., and Radinsky, K. (2021). ECG
ODE-GAN: Learning ordinary differential equations
of ECG dynamics via generative adversarial learning.
Proceedings of the AAAI Conference on Artificial
Intelligence, 35:134–141.
Golany, T. and Radinsky, K. (2019). PGANs: Personalized
generative adversarial networks for ecg synthesis
to improve patient-specific deep ECG classificati on.
Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):557–564.
Goodfellow, I., Pouget - A badie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. (2014). Generative adversarial nets.
Advances in neural information processing systems,
27:2672–2680.
Hazra, D. and Byun, Y.-C. (2020). SynSigGAN: Generative
adversarial networks for synthetic biomedical signal
generation. Biology, 9(12):441.
He, K., Zhang, X. , Ren, S ., and Sun, J. (2016).
Deep residual learning for image recognition. In
Proceedings of the I EEE conference on computer
vision and pattern recognition, pages 770–778.
Kachuee, M., Fazeli, S., and Sarrafzadeh, M. (2018).
Ecg heartbeat classification: A deep transferable
representation. In 2018 IEEE International
Conference on Healthcare Informatics (ICHI),
pages 443–444, New York, United States. IEEE.
Kamaruddin, N. H., Murugappan, M., and Omar,
M. I. (2012). Early prediction of cardiovascular
diseases using ecg signal: Review. In 2012 IEEE
Student Conference on Research and Development
(SCOReD), pages 48–53.
Kang, P., Jiang, S., and Shull, P. B. (2022). Synthetic
emg based on adversarial style transfer can effectively
attack biometric-based personal identification models.
bioRxiv.
Kiyasseh, D., Tadesse, G. A., Nhan, L. N. T., Van Tan,
L., Thwaites, L., Zhu, T., and Clifton, D. (2020).
Plethaugment: Gan-based ppg augmentation for
medical diagnosis in low-resource settings. IEEE
Journal of Biomedical and Health Informatics,
24(11):3226–3235.
Kumar, G., Pawar, U., and O’Reilly, R. (2019). Ar r hythmia
detection in ecg signals using a multilayer perceptron
network. In The 27th Irish Conference on Artificial
Intelligence and Cognitive Science, pages 353–364,
Galway, Ireland. AICS.
Lanza, G. A. (2007). The electrocardiogram as a prognostic
tool for predicting major cardiac events. Progress in
cardiovascular diseases, 50(2):87–111.
Liang, Y., Chen, Z., Liu, G., and Elgendi, M. (2018a). A
new, short-recorded photoplethysmogram dataset for
blood pressure monitoring in china. Scientific data,
5(1):1–7.
Liang, Y., Chen, Z., Ward, R., and Elgendi, M.
(2018b). Hypertension assessment using
photoplethysmography: a risk stratification approach.
Journal of clinical medicine, 8(1):12.
Liu, S.-H., Li, R.-X., Wang, J.-J., Chen, W., and Su, C.-H.
(2020). Classification of photoplethysmographic
signal quality with deep convolution neural networks
for accurate measurement of cardiac stroke volume.
Applied Sciences, 10.
Mensah, G. A., Roth, G. A., and Fuster, V. (2019). The
global burden of cardiovascular diseases and risk
factors: 2020 and beyond.
Neifar, N., Ben-Hamadou, A., Mdhaffar, A., Jmaiel, M.,
and Freisleben, B. (2022a). Leveraging stati stical
shape priors i n gan-based ecg synthesis. arXiv
preprint arXiv:2211.02626.
Neifar, N., Mdhaffar, A., Ben-Hamadou, A., Jmaiel,
M., and Freisleben, B. (2022b). Disentangling
temporal and amplitude variati ons in ecg synthesis
using anchor ed gans. In The 37th ACM/SIGAPP
Symposium on Applied Computing, pages 645—-652,
New York, USA. ACM.
Sannino, G., De Falco, I., and De Pietro, G. (2020).
Non-invasive risk stratification of hypertension:
a systematic comparison of machine learning
algorithms. Journal of Sensor and Actuator N et works,
9(3):34.
Simonyan, K. and Zisserman, A. (2014). Very
deep convolutional networ ks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.
Song, J.-M., Jin, G.-H., Seo, S.-B., Park, J.-S., Lee, S.-B.,
and Ryu, K.-H. (2011). Design and implementation of
a prediction system for cardiovascular diseases using
ppg. Journal of the Korean Society of Radiology,
5(1):19–25.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. (2017). Attention is all you need. In Guyon,
I., Luxburg, U. V., Bengio, S. , Wallach, H., Fergus,
R., Vishwanathan, S., and Garnett, R. , editors,
Advances i n Neural Information Processing Systems,
volume 30. C urran Associates, Inc.
Wang, H. , Ge, Z., and Wang, Z. (2020). Accurate ECG
data generation with a simple generative adversarial
network. In Journal of Physics: Conference Series,
volume 1631, page 012073. IOP Publishing.
Wang, Z., Yan, W., and Oates, T. (2017). Time
series classification from scratch with deep neural
networks: A strong baseline. In 2017 International
joint conference on neural networks (IJCNN), pages
1578–1585. IEEE.