on extending the banknote classification process to
tackle banknotes from other countries. Furthermore,
we intend to address deformed image banknotes, re-
producing crumpled banknotes.
ACKNOWLEDGEMENTS
This work was developed with support from the Mo-
torola, through the IMPACT-Lab R&D project, in the
Institute of Computing (ICOMP) of the Federal Uni-
versity of Amazonas (UFAM).
REFERENCES
Abburu, V., Gupta, S., Rimitha, S. R., Mulimani, M.,
and Koolagudi, S. G. (2017). Currency recognition
system using image processing. In 2017 Tenth In-
ternational Conference on Contemporary Computing
(IC3), pages 1–6.
Ayalew Tessfaw, E., Ramani, B., and Kebede Bahiru, T.
(2018). Ethiopian banknote recognition and fake de-
tection using support vector machine. In 2018 Sec-
ond International Conference on Inventive Commu-
nication and Computational Technologies (ICICCT),
pages 1354–1359.
Baykal, G., Demir, U., Shyti, I., and
¨
Unal, G. (2018). Turk-
ish lira banknotes classification using deep convolu-
tional neural networks. In 2018 26th Signal Pro-
cessing and Communications Applications Confer-
ence (SIU), pages 1–4.
Bourne, R. R. A., Flaxman, S. R., Braithwaite, T., Cicinelli,
M. V., Das, A., Jonas, J. B., Keeffe, J., Kempen, J. H.,
Leasher, J., Limburg, H., Naidoo, K., Pesudovs, K.,
Resnikoff, S., Silvester, A., Stevens, G. A., Tahhan,
N., Wong, T. Y., and Taylor, H. R. (2017). Magni-
tude, temporal trends, and projections of the global
prevalence of blindness and distance and near vision
impairment: a systematic review and meta-analysis.
The Lancet Global Health, 5(9):e888–e897.
Dittimi, T. V., Hmood, A. K., and Suen, C. Y. (2017). Multi-
class svm based gradient feature for banknote recog-
nition. In 2017 IEEE International Conference on In-
dustrial Technology (ICIT), pages 1030–1035.
Huang, X. and Gai, S. (2020). Banknote classification based
on convolutional neural network in quaternion wavelet
domain. IEEE Access, 8:162141–162148.
IBGE (2019). Pesquisa nacional de sa
´
ude 2019: percepc¸
˜
ao
do estado de sa
´
ude, estilos de vida, doenc¸as cr
ˆ
onicas
e sa
´
ude bucal; Brasil e grandes regi
˜
oes. Coordenac¸
˜
ao
de Trabalho e Rendimento. Rio de Janeiro: Instituto
Brasileiro de Geografia e Estat
´
ıstica (IBGE).
Joshi, R. C., Yadav, S., and Dutta, M. K. (2020). YOLO-
v3 based currency detection and recognition system
for visually impaired persons. In 2020 International
Conference on Contemporary Computing and Appli-
cations (IC3A). IEEE.
Khashman, A., Ahmed, W., and Mammadli, S. (2018). Ban-
knote issuing country identification using image pro-
cessing and neural networks. In 13th International
Conference on Theory and Application of Fuzzy Sys-
tems and Soft Computing (ICAFS), pages 746–753.
Springer International Publishing.
Kongprasert, T. and chongstitvatana, P. (2019). Parameters
learning of bps m7 banknote processing machine for
banknote fitness classification. In 2019 23rd Interna-
tional Computer Science and Engineering Conference
(ICSEC), pages 310–314.
Laavanya, M. and Vijayaraghavan, V. (2019). Real time
fake currency note detection using deep learning.
International Journal of Engineering and Advanced
Technology, 9(1S5):95–98.
Ng, S.-C., Kwok, C.-P., Chung, S.-H., Leung, Y.-Y., and
Pang, H.-S. (2020). An intelligent banknote recogni-
tion system by using machine learning with assistive
technology for visually impaired people. In 2020 10th
International Conference on Information Science and
Technology (ICIST). IEEE.
Pham, T., Nguyen, D., Park, C., and Park, K. (2019).
Deep learning-based multinational banknote type and
fitness classification with the combined images by
visible-light reflection and infrared-light transmission
image sensors. Sensors, 19(4):792.
Sanghun Lee, Sangwook Baek, Euisun Choi, Yoonkil Baek,
and Chulhee Lee (2017). Soiled banknote fitness de-
termination based on morphology and otsu’s thresh-
olding. In 2017 IEEE International Conference on
Consumer Electronics (ICCE), pages 450–451.
Sousa, L. P., Veras, R. M. S., Vogado, L. H. S., Britto Neto,
L. S., Silva, R. R. V., Araujo, F. H. D., and Medeiros,
F. N. S. (2020). Banknote identification methodology
for visually impaired people. In 2020 International
Conference on Systems, Signals and Image Processing
(IWSSIP), pages 261–266.
Sun, W., Ma, Y., Yin, Z., and Gu, A. (2018). Banknote fit-
ness classification based on convolutional neural net-
work*. In 2018 IEEE International Conference on In-
formation and Automation (ICIA), pages 1545–1549.
Tan, C. J., Wong, W. K., and Min, T. S. (2020). Malaysian
banknote reader for visually impaired person. In 2020
IEEE Student Conference on Research and Develop-
ment (SCOReD). IEEE.
Thomas, M. and Meehan, K. (2021). Banknote object de-
tection for the visually impaired using a cnn. In 2021
32nd Irish Signals and Systems Conference (ISSC),
pages 1–6. IEEE.
Yousry, A., Taha, M., and Selim, M. (2018). Currency
recognition system for blind people using orb algo-
rithm. International Arab Journal of e-Technology,
5:34–40.
Brazilian Banknote Recognition Based on CNN for Blind People
853