Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural Lan-
guage Processing (almost) from Scratch. Journal of
Machine Learning Research, 12:2493–2537.
Contributors, W. (2022a). TCP Slow start — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/wiki/
TCP congestion control#Slow start.
Contributors, W. (2022b). Wall follower — Maze-
solving algorithm — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/wiki/Maze-solving
algorithm#Wall follower.
Corsi, D., Yerushalmi, R., Amir, G., Farinelli, A., Harel,
D., and Katz, G. (2022a). Constrained Reinforcement
Learning for Robotics via Scenario-Based Program-
ming. Technical Report. https://arxiv.org/abs/2206.
09603.
Corsi, D., Yerushalmi, R., Amir, G., Farinelli, A., Harel,
D., and Katz, G. (2022b). Constrained Reinforce-
ment Learning for Robotics via Scenario-Based Pro-
gramming — Code Base. https://github.com/d-corsi/
ScenarioBasedRL.
Desai, A., Ghosh, S., Seshia, S. A., Shankar, N., and Tiwari,
A. (2018). Soter: Programming Safe Robotics System
using Runtime Assurance. Technical Report. http://
arxiv.org/abs/1808.07921.
Dong, M., Li, Q., Zarchy, D., Godfrey, P. B., and Schapira,
M. (2015). {PCC}: Re-Architecting Congestion Con-
trol for Consistent High Performance. In Proc. 12th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 395–408.
Dong, M., Meng, T., Zarchy, D., Arslan, E., Gilad, Y.,
Godfrey, B., and Schapira, M. (2018). PCC Vivace:
Online-Learning Congestion Control. In Proc. 15th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 343–356.
Elyasaf, A. (2021). Context-Oriented Behavioral Pro-
gramming. Information and Software Technology,
133:106504.
Eugster, P., Felber, P., Guerraoui, R., and Kermarrec, A.-M.
(2003). The Many Faces of Publish/Subscribe. ACM
Computing Surveys (CSUR), 35(2):114–131.
Falcone, Y., Mounier, L., Fernandez, J., and Richier, J.
(2011). Runtime Enforcement Monitors: Compo-
sition, Synthesis, and Enforcement Abilities. Jour-
nal on Formal Methods in System Design (FMSD),
38(3):223–262.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
learning. MIT press.
Gordon, M., Marron, A., and Meerbaum-Salant, O. (2012).
Spaghetti for the Main Course? Observations on
the Naturalness of Scenario-Based Programming. In
Proc. 17th Conf. on Innovation and Technology in
Computer Science Education (ITICSE), pages 198–
203.
Hamlen, K., Morrisett, G., and Schneider, F. (2006).
Computability Classes for Enforcement Mechanisms.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 28(1):175–205.
Harel, D. (1986). A Visual Formalism for Complex Sys-
tems. Science of Computer Programming, 8(3).
Harel, D., Kantor, A., and Katz, G. (2013). Relaxing Syn-
chronization Constraints in Behavioral Programs. In
Proc. 19th Int. Conf. on Logic for Programming, Arti-
ficial Intelligence and Reasoning (LPAR), pages 355–
372.
Harel, D. and Katz, G. (2014). Scaling-Up Behavioral Pro-
gramming: Steps from Basic Principles to Applica-
tion Architectures. In Proc. 4th SPLASH Workshop
on Programming based on Actors, Agents and Decen-
tralized Control (AGERE!), pages 95–108.
Harel, D., Katz, G., Lampert, R., Marron, A., and Weiss, G.
(2015a). On the Succinctness of Idioms for Concur-
rent Programming. In Proc. 26th Int. Conf. on Con-
currency Theory (CONCUR), pages 85–99.
Harel, D., Katz, G., Marelly, R., and Marron, A. (2016).
An Initial Wise Development Environment for Behav-
ioral Models. In Proc. 4th Int. Conf. on Model-Driven
Engineering and Software Development (MODEL-
SWARD), pages 600–612.
Harel, D., Katz, G., Marelly, R., and Marron, A. (2018).
Wise Computing: Toward Endowing System Devel-
opment with Proactive Wisdom. IEEE Computer,
51(2):14–26.
Harel, D., Katz, G., Marron, A., and Weiss, G. (2014). Non-
Intrusive Repair of Safety and Liveness Violations in
Reactive Programs. Transactions on Computational
Collective Intelligence (TCCI), 16:1–33.
Harel, D., Katz, G., Marron, A., and Weiss, G. (2015b). The
Effect of Concurrent Programming Idioms on Veri-
fication. In Proc. 3rd Int. Conf. on Model-Driven
Engineering and Software Development (MODEL-
SWARD), pages 363–369.
Harel, D., Marron, A., and Sifakis, J. (2022). Creating
a Foundation for Next-Generation Autonomous Sys-
tems. IEEE Design & Test.
Harel, D., Marron, A., and Weiss, G. (2010). Programming
Coordinated Behavior in Java. In Proc. European
Conf. on Object-Oriented Programming (ECOOP),
pages 250–274.
Harel, D., Marron, A., and Weiss, G. (2012). Behav-
ioral programming. Communications of the ACM,
55(7):90–100.
Jay, N., Rotman, N., Godfrey, B., Schapira, M., and Tamar,
A. (2019). A Deep Reinforcement Learning Per-
spective on Internet Congestion Control. In Proc.
Int. Conf. on Machine Learning (ICML), pages 3050–
3059.
Ji, Y. and Lafortune, S. (2017). Enforcing Opacity by Pub-
licly Known Edit Functions. In Proc. 56th IEEE An-
nual Conf. on Decision and Control (CDC), pages 12–
15.
Julian, K., Lopez, J., Brush, J., Owen, M., and Kochender-
fer, M. (2016). Policy Compression for Aircraft Col-
lision Avoidance Systems. In Proc. IEEE/AIAA 35th
Digital Avionics Systems Conference (DASC), pages
1–10.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov,
M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
ˇ
Z
´
ıdek, A., Potapenko, A., et al. (2021). Highly Accu-
Enhancing Deep Learning with Scenario-Based Override Rules: A Case Study
267