Gehrlein, W. and Lepelley, D. (2011). Voting Paradoxes and
Group Coherence: The Condorcet Efficiency of Voting
Rules. Studies in Choice and Welfare. Springer-Verlag
Berlin Heidelberg, 1 edition.
Guiwu, W., Jie, W., Jianping, L., Jiang, W., Cun, W., Fuad,
E., and Tasawar, H. (2020). Vikor method for multiple
criteria group decision making under 2-tuple linguis-
tic neutrosophic environment. Economic Research-
Ekonomska Istraživanja, 33(1):3185–3208.
Hinton, G. (2002). Training products of experts by mini-
mizing contrastive divergence. Neural computation,
14(8):1771–1800.
Hinton, G. (2012). A practical guide to training restricted
boltzmann machines. In Montavon, G., Orr, G. B.,
and Müller, K.-R., editors, Neural Networks: Tricks
of the Trade (2nd ed.), volume 7700, pages 599–619.
Springer.
Khoramipour, K., Sandbakk, O., Keshteli, A., Gaeini, A.,
Wishart, D., and Chamari, K. (2022). Metabolomics
in exercise and sports: A systematic review. Sports
Med., 52(3):547–583.
Li, X., Wang, X., and Xiao, G. (2017). A comparative study
of rank aggregation methods for partial and top ranked
lists in genomics applications. Briefings in Bioinfor-
matics, 20(1):178–189.
Louis, E., Cantrelle, F., Mesotten, L., Reekmans, G., and
Adriaensens, P. (2017). Metabolic phenotyping of hu-
man plasma by (1) h-nmr at high and medium mag-
netic field strengths: a case study for lung cancer.
Magnetic resonance in chemistry : MRC, 55.
Nielsen, F. (2022). Statistical divergences between densi-
ties of truncated exponential families with nested sup-
ports: Duo bregman and duo jensen divergences. En-
tropy, 24(3).
Paul, L., Naughton, M., Jones, B., Davidow, D., Patel, A.,
Lambert, M., and Hendricks, S. (2022). Quantifying
collision frequency and intensity in rugby union and
rugby sevens: A systematic review. Sports Medicine -
Open, 8.
Rahman, A., Sungyoung, L., and Tae, C. (2017). Accurate
multi-criteria decision making methodology for rec-
ommending machine learning algorithm. Expert Sys-
tems with Applications, 71:257–278.
Roy, B. (1985). Methodologie multicritere d’aide a la deci-
sion. Economica, Paris,.
Savage, R. (1956). Contributions to the theory of rank-order
statistics – the trend case. The Annals of Mathematical
Statistics, 27(3):590–615.
Sharma, P., Yadav, D., Thakur, R. N., Reddy, K., and
Praveen, M. (2022). Web page ranking using web
mining techniques: A comprehensive survey. Mob.
Inf. Syst., 2022.
Thakkar, J. (2021). Multi-Criteria Decision Making.
Springer, first edition.
Verma, S., Patel, P., and Majumdar, A. (2019). Col-
laborative Filtering with Label Consistent Re-
stricted Boltzmann Machine. arXiv e-prints, page
arXiv:1910.07724.
Vigneron, V. and Tomazeli Duarte, L. (2018). Rank-order
principal components. A separation algorithm for or-
dinal data exploration. In 2018 International Joint
Conference on Neural Networks, IJCNN 2018, Rio de
Janeiro, Brazil, July 8-13, 2018, pages 1–6.
Vrábel, J., Po
ˇ
rízka, P., and Kaiser, J. (2020). Restricted
boltzmann machine method for dimensionality reduc-
tion of large spectroscopic data. Spectrochimica Acta
Part B: Atomic Spectroscopy, 167:105849.
Yadav, N.. author. abd Yadav, A. and Kumar, M. (2015). An
Introduction to Neural Network Methods for Differen-
tial Equations. Springer, Gurgaon, Haryana, India.
Yazdani, M., Fomba, S., and Zaraté, P. (2017). A Decision
Support System for Multiple Criteria Decision Mak-
ing Problems. In 17th International Conference on
Group Decision and Negotiation (GDN 217), pages
67–75, Stuttgart, Germany.
Yin, J., Lv, J., Sang, Y., and Guo, J. (2018). Classifica-
tion model of restricted boltzmann machine based on
reconstruction error. Neural Computing and Applica-
tions, 29:1–16.
A Rank Aggregation Algorithm for Performance Evaluation in Modern Sports Medicine with NMR-based Metabolomics
339