Alternating-time Temporal Logic. Journal of the
ACM, 49:672–713.
Batten, B., Kouvaros, P., Lomuscio, A., and Zheng, Y.
(2021). Efficient neural network verification via layer-
based semidefinite relaxations and linear cuts. In Pro-
ceedings of IJCAI, pages 2184–2190. ijcai.org.
Bulling, N., Dix, J., and Jamroga, W. (2010). Model check-
ing logics of strategic ability: Complexity. In Dastani,
M., Hindriks, K., and Meyer, J.-J., editors, Specifi-
cation and Verification of Multi-Agent Systems, pages
125–159. Springer.
Bulling, N., Goranko, V., and Jamroga, W. (2015). Logics
for reasoning about strategic abilities in multi-player
games. In van Benthem, J., Ghosh, S., and Verbrugge,
R., editors, Models of Strategic Reasoning. Logics,
Games, and Communities, volume 8972 of Lecture
Notes in Computer Science, pages 93–136. Springer.
Clarke, E., Henzinger, T., Veith, H., and Bloem, R., editors
(2018). Handbook of Model Checking. Springer.
Conti, M. and Passarella, A. (2018). The internet of peo-
ple: A human and data-centric paradigm for the next
generation internet. Comput. Commun., 131:51–65.
Contucci, P., Kertesz, J., and Osabutey, G. (2022). Human-
ai ecosystem with abrupt changes as a function of the
composition. PLOS ONE, 17(5):1–12.
Dolev, D. and Yao, A. C. (1983). On the security of public
key protocols. IEEE Trans. Inf. Theory, 29(2):198–
207.
Drainakis, G., Katsaros, K. V., Pantazopoulos, P., Sourlas,
V., and Amditis, A. (2020). Federated vs. centralized
machine learning under privacy-elastic users: A com-
parative analysis. In Proceedings of NCA, pages 1–8.
IEEE.
Emerson, E. (1990). Temporal and modal logic. In van
Leeuwen, J., editor, Handbook of Theoretical Com-
puter Science, volume B, pages 995–1072. Elsevier.
Fuchs, A., Passarella, A., and Conti, M. (2022). Model-
ing human behavior part I - learning and belief ap-
proaches. CoRR, abs/2205.06485.
Gollmann, D. (2011). Computer Security (3. ed.). Wiley.
Goodfellow, I. J., McDaniel, P. D., and Papernot, N. (2018).
Making machine learning robust against adversarial
inputs. Commun. ACM, 61(7):56–66.
Heged
¨
us, I., Danner, G., and Jelasity, M. (2019). Gos-
sip learning as a decentralized alternative to federated
learning. In Proceedings of IFIP DAIS, volume 11534
of Lecture Notes in Computer Science, pages 74–90.
Springer.
Heged
¨
us, I., Danner, G., and Jelasity, M. (2021). Decen-
tralized learning works: An empirical comparison of
gossip learning and federated learning. J. Parallel Dis-
tributed Comput., 148:109–124.
Jamroga, W., Knapik, M., Kurpiewski, D., and Mikulski, Ł.
(2019). Approximate verification of strategic abilities
under imperfect information. Artificial Intelligence,
277.
Jamroga, W., Penczek, W., and Sidoruk, T. (2021). Strate-
gic abilities of asynchronous agents: Semantic side
effects and how to tame them. In Proceedings of KR
2021, pages 368–378.
Jamroga, W., Penczek, W., Sidoruk, T., Dembi
´
nski, P., and
Mazurkiewicz, A. (2020). Towards partial order re-
ductions for strategic ability. Journal of Artificial In-
telligence Research, 68:817–850.
Kianpour, M. and Wen, S. (2019). Timing attacks on ma-
chine learning: State of the art. In IntelliSys Volume 1,
volume 1037 of Advances in Intelligent Systems and
Computing, pages 111–125. Springer.
Kouvaros, P. and Lomuscio, A. (2021). Towards scal-
able complete verification of relu neural networks via
dependency-based branching. In Proceedings of IJ-
CAI, pages 2643–2650. ijcai.org.
Kumar, R. S. S., Nystr
¨
om, M., Lambert, J., Marshall, A.,
Goertzel, M., Comissoneru, A., Swann, M., and Xia,
S. (2020). Adversarial machine learning-industry per-
spectives. In IEEE Security and Privacy Workshops,
pages 69–75. IEEE.
Kurpiewski, D. (2022). STV – StraTegic Verifier. code
repository. https://github.com/blackbat13/stv.
Kurpiewski, D., Jamroga, W., Masko, L., Mikulski, L.,
Pazderski, W., Penczek, W., and Sidoruk, T. (2022).
Verification of Multi-agent Properties in Electronic
Voting: A Case Study. In Proceedings of AiML 2022.
Kurpiewski, D., Pazderski, W., Jamroga, W., and Kim, Y.
(2021). STV+Reductions: Towards practical verifi-
cation of strategic ability using model reductions. In
Proceedings of AAMAS, pages 1770–1772. ACM.
Lomuscio, A., Qu, H., and Raimondi, F. (2017). MCMAS:
An open-source model checker for the verification of
multi-agent systems. International Journal on Soft-
ware Tools for Technology Transfer, 19(1):9–30.
Lorenzo, V., Boldrini, C., and Passarella, A. (2022). SAI
simulator for social AI gossiping. https://zenodo.org/
record/5780042.
Ottun, A.-R., Mane, P. C., Yin, Z., Paul, S., Liyanage,
M., Pridmore, J., Ding, A. Y., Sharma, R., Nurmi,
P., and Flores, H. (2022). Social-aware federated
learning: Challenges and opportunities in collabora-
tive data training. IEEE Internet Computing, pages
1–7.
Pauly, M. (2002). A modal logic for coalitional power
in games. Journal of Logic and Computation,
12(1):149–166.
Schobbens, P. (2004). Alternating-time logic with imper-
fect recall. Electronic Notes in Theoretical Computer
Science, 85(2):82–93.
Shoham, Y. and Leyton-Brown, K. (2009). Multiagent
Systems - Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge University Press.
Social AI gossiping. Micro-project in Humane-AI-Net
(2022). Project website. https://www.ai4europe.eu/
research/research-bundles/social-ai-gossiping.
Social Explainable AI, CHIST-ERA (2021–24). Project
website. http://www.sai-project.eu/.
Toprak, M., Boldrini, C., Passarella, A., and Conti, M.
(2021). Harnessing the power of ego network layers
for link prediction in online social networks. CoRR,
abs/2109.09190.
Weiss, G., editor (1999). Multiagent Systems. A Modern
Approach to Distributed Artificial Intelligence. MIT
Press: Cambridge, Mass.
Wu, M., Wicker, M., Ruan, W., Huang, X., and
Kwiatkowska, M. (2020). A game-based approxi-
mate verification of deep neural networks with prov-
able guarantees. Theor. Comput. Sci., 807:298–329.
Towards Modelling and Verification of Social Explainable AI
403