Monostori L., (2003), AI and machine learning techniques
for managing complexity, changes and uncertainties in
manufacturing, Engineering applications of artificial
intelligence 16 (4) 277–291.
Alfaro-Cortes E., Alfaro-Navarro J.-L., Gamez M., Garcıa
N., (2020), Using random forest to interpret out-of-
control signals, Acta Polytech. Hung. 17 (6) 115–130.
Zhang X., Kano M., Tani M., Mori J., Harada J. Ise, K.,
(2020), Prediction and causal analysis of defects in steel
products: Handling nonnegative and highly
overdispersed count data, Control Engineering Practice
95, 104258.
Cho E., Jun J.-H., Chang T.-W., Choi Y., (2020), Quality
prediction modelling of plastic extrusion process, ICIC
express letters. Part B, Applications: an international
journal of research and surveys 11 (5) ,447–452.
Dogan A., Birant D., (2021) Machine learning and data
mining in manufacturing, Expert Systems with
Applications 166 ,114060.
Tiwari R. Rai, M. K., Ivanov D., Dolgui A., (2021). Machine
learning in manufacturing and industry 4.0 applications
Jian C., Ping J., Zhang M., (2021), A cloud edge-based two-
level hybrid scheduling learning model in cloud
manufacturing, International Journal of Production
Research 59 (16) 4836–4850.
Chen B., Wan J., Celesti A., Abbas D. Li, H., Zhang Q.,
(2018), Edge computing in iot-based manufacturing,
IEEE Communications Magazine 56 (9) ,103–109.
Tao Q. Qi, F., (2019), A smart manufacturing service
system based on edge computing, fog computing, and
cloud computing, IEEE Access 7, 86769–86777.
Liao J. Lu, X., Ouyang S. Li, H., Chen K., Huang B.,
(2019), An effective ABC-SVM approach for surface
roughness prediction in manufacturing processes,
Complexity 2019
Casalino G., Facchini F., Mortello M., Mummolo G.,
(2016), Ann modelling to optimize manufacturing
processes: The case of laser welding, IFAC-
PapersOnLine 49 (12), 378–383.
Ronowicz J., Thommes M., Kleinebudde P., Krysinski J.,
(2015), A data mining approach to optimize pellets
manufacturing process based on a decision tree
algorithm, European Journal of Pharmaceutical
Sciences 73, 44–48.
Kong N. Li, H., Gong Y. Ma, G., Huai W., (2016), Human
performance modelling for manufacturing based on an
improved KNN algorithm, The International Journal of
Advanced Manufacturing Technology 84 (1-4) 473–483.
Doulgkeroglou M.-N., Nubila A. Di, Niessing B., Konig N.,
Schmitt R. H., Damen J., Szilvassy S. J., Chang W.,
Csontos L., Louis S., et al., (2020), Automation,
monitoring, and standardization of cell product
manufacturing, Frontiers in Bioengineering and
Biotechnology 8, 811.
Syafrudin M., Alfian G., Fitriyani N. L., Rhee J., (2018),
Performance analysis of iot-based sensor, big data
processing, and machine learning model for real-time
monitoring system in automotive manufacturing,
Sensors 18 (9), 2946.
Romero D., Gaiardelli P., Powell D., Wuest T., Thurer M.,
(2019), Rethinking jidoka systems under automation &
learning perspectives in the digital lean manufacturing
world, IFAC-PapersOnLine 52 (13) , 899–903
Chui M., George K., Manyika J., Miremadi M., (2017),
Human+ machine: A new era of automation in
manufacturing, McKinsey & Company 13.
Bricher D., Muller A., (2020), A supervised machine
learning approach for in- telligent process automation
in container logistics, Journal of Computing and
Information Science in Engineering 20 (3)
Singh, D. and Venkateswara R. P, (2007), A surface
roughness prediction model for hard turning process,
The International Journal of Advanced Manufacturing
Technology, 1115–1124.
Jurkovic, Z., Cukor G., Brezocnik M., and Brajkovic T,
(2018), A comparison of machine learning methods for
cutting parameters prediction in high speed turning
process, Journal of Intelligent Manufacturing, 1683–
1693.
Laghari, R. A., Li, J., Laghari, A. A., Mia, M., Wang, S. A.,
Wang P. KK, (2019) , Carbide tool life prediction and
modelling in SiCp/Al turning process via artificial
neural network approach, IOP Conference Series:
Materials Science and Engineering 012022.
Zhao X., Lovreglio R. and Nilsson D., (2020) , Modelling
and interpreting pre-evacuation decision-making using
machine learning, Automation in Construction,
103140.
Uzkent B., Sheehan E., Meng C., Tang Z, Burke M, Lobell
D, and Ermon S, (2019), Learning to interpret satellite
images using Wikipedia, Proceedings of the Twenty-
Eighth International Joint Conference on Artificial
Intelligence.
Brisk R, Bond RR, Banks E, Piadlo A, Finlay D,
McLaughlin J, and David M, (2019), Deep learning to
automatically interpret images of the
electrocardiogram: Do we need the raw samples?,
Journal of electrocardiology, S65–S69
Kim D-H, Kim T, Wang X, Kim M, Quan Y, Oh J, Min S-
H, Kim H, Bhandari B, Yang I, and Ahn, S-H, (2018),
Smart Machining Process Using Machine Learning: A
Review and Perspective on Machining Industry,
International Journal of Precision Engineering and
Manufacturing-Green Technology, 555-568.
Rahman H, Ahmed M.U, Barua, S, Funk P, and Begum S,
(2021) Vision-Based Driver’s Cognitive Load
Classification Considering Eye Movement Using
Machine Learning and Deep Learning, Sensors, 1424-
8220.
Qadir H A, Shin Y, Solhusvik, J, Bergsland J, Aabakken L,
Balasingham I, (2019), Polyp detection and
segmentation using mask R-CNN: Does a deeper
feature extractor CNN always perform better?, 2019
13th International Symposium on Medical Information
and Communication Technology (ISMICT) 1–6.
Sheuly, S.S., Ahmed M U, and Begum S, (2021), Machine
Learning Based Digital Twin in Manufacturing: A
Bibliometric Analysis and Evolutionary Overview,
submitted to Journal of applied sciences, 1424-8220.