Hu, S., Li, Y., Liu, X., Li, Q., Wu, Z., and He, B. (2022a).
The OARF benchmark suite: Characterization and im-
plications for federated learning systems. ACM Trans.
Intell. Syst. Technol., 13(4).
Hu, S., Li, Y., Liu, X., Li, Q., Wu, Z., and He, B. (2022b).
The OARF benchmark suite: Characterization and
implications for federated learning systems [source
code], https://github.com/xtra-computing/oarf.
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Ben-
nis, M., Bhagoji, A. N., Bonawitz, K. A., Charles, Z.,
Cormode, G., Cummings, R., D’Oliveira, R. G. L.,
Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z.,
Gasc
´
on, A., Ghazi, B., Gibbons, P. B., Gruteser, M.,
Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson,
B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Kho-
dak, M., Kone
ˇ
cn
´
y, J., Korolova, A., Koushanfar, F.,
Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M.,
Nock, R.,
¨
Ozg
¨
ur, A., Pagh, R., Raykova, M., Qi, H.,
Ramage, D., Raskar, R., Song, D., Song, W., Stich,
S. U., Sun, Z., Suresh, A. T., Tram
`
er, F., Vepakomma,
P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu,
H., and Zhao, S. (2019). Advances and open problems
in federated learning. CoRR, abs/1912.04977.
Krizhevsky, A. and Hinton, G. (2009). Learning multiple
layers of features from tiny images. Technical Re-
port 0, University of Toronto, Toronto, Ontario.
Liu, Y., Zhang, X., and Wang, L. (2020). Asymmetrical
vertical federated learning. CoRR, abs/2004.07427.
McMahan, H. B., Moore, E., Ramage, D., and y Arcas,
B. A. (2016). Federated learning of deep networks
using model averaging. CoRR, abs/1602.05629.
Saha, S. and Ahmad, T. (2020). Federated transfer learning:
concept and applications. CoRR, abs/2010.15561.
Varrette, S., Cartiaux, H., Peter, S., Kieffer, E., Valette, T.,
and Olloh, A. (2022). Management of an Academic
HPC & Research Computing Facility: The ULHPC
Experience 2.0. In Proc. of the 6th ACM High Per-
formance Computing and Cluster Technologies Conf.
(HPCCT 2022), Fuzhou, China. Association for Com-
puting Machinery (ACM).
Vepakomma, P., Gupta, O., Swedish, T., and Raskar, R.
(2018). Split learning for health: Distributed deep
learning without sharing raw patient data. CoRR,
abs/1812.00564.
Xia, W., Li, Y., Zhang, L., Wu, Z., and Yuan, X. (2021). A
vertical federated learning framework for horizontally
partitioned labels. CoRR, abs/2106.10056.
Yang, Q., Liu, Y., Chen, T., and Tong, Y. (2019). Federated
machine learning: Concept and applications. ACM
Trans. Intell. Syst. Technol., 10(2).
Yuan, B., Ge, S., and Xing, W. (2020). A federated learn-
ing framework for healthcare iot devices. CoRR,
abs/2005.05083.
Zhang, J. and Jiang, Y. (2022). A data augmentation method
for vertical federated learning. Wireless Communica-
tions and Mobile Computing, 2022:1–16.
ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence
426