use and smaller in size as a result of the decreased
processing requirements. In the future, the current
effort will be broadened to produce more exhaustive
findings.
REFERENCES
Alotaiby, T. N., Alshebeili, S. A., Alotaibi, F. M., and Alr-
shoud, S. R. (2017). Epileptic seizure prediction using
csp and lda for scalp eeg signals. Computational in-
telligence and neuroscience, 2017.
Cui, S., Duan, L., Qiao, Y., and Xiao, Y. (2018). Learning
eeg synchronization patterns for epileptic seizure pre-
diction using bag-of-wave features. Journal of Am-
bient Intelligence and Humanized Computing, pages
1–16.
Dissanayake, T., Fernando, T., Denman, S., Sridharan, S.,
and Fookes, C. (2021). Deep learning for patient-
independent epileptic seizure prediction using scalp
eeg signals. IEEE Sensors Journal, 21(7):9377–9388.
Gao, Y., Chen, X., Liu, A., Liang, D., Wu, L., Qian, R., Xie,
H., and Zhang, Y. (2022). Pediatric seizure prediction
in scalp eeg using a multi-scale neural network with
dilated convolutions. IEEE Journal of Translational
Engineering in Health and Medicine, 10:1–9.
Halawa, R. I., Youssef, S. M., and Elagamy, M. N. (2022).
An efficient hybrid model for patient-independent
seizure prediction using deep learning. Applied Sci-
ences, 12(11):5516.
Khan, G. H., Khan, N. A., Altaf, M. A. B., and Abid, M.
U. R. (2021). Classifying single channel epileptic eeg
data based on sparse representation using shallow au-
toencoder. In 2021 43rd Annual International Confer-
ence of the IEEE Engineering in Medicine and Biol-
ogy Society (EMBC), pages 643–646. IEEE.
Li, Y., Liu, Y., Guo, Y.-Z., Liao, X.-F., Hu, B., and
Yu, T. (2021). Spatio-temporal-spectral hierarchical
graph convolutional network with semisupervised ac-
tive learning for patient-specific seizure prediction.
IEEE transactions on cybernetics.
Liang, D., Liu, A., Li, C., Liu, J., and Chen, X.
(2022). A novel consistency-based training strategy
for seizure prediction. Journal of Neuroscience Meth-
ods, 372:109557.
Meng, Q., Catchpoole, D., Skillicom, D., and Kennedy, P. J.
(2017). Relational autoencoder for feature extraction.
In 2017 International Joint Conference on Neural Net-
works (IJCNN), pages 364–371. IEEE.
Rasheed, K., Qadir, J., O’Brien, T. J., Kuhlmann, L., and
Razi, A. (2021). A generative model to synthesize eeg
data for epileptic seizure prediction. IEEE Transac-
tions on Neural Systems and Rehabilitation Engineer-
ing, 29:2322–2332.
Ryu, S. and Joe, I. (2021). A hybrid densenet-lstm model
for epileptic seizure prediction. Applied Sciences,
11(16):7661.
Sun, B., Lv, J.-J., Rui, L.-G., Yang, Y.-X., Chen, Y.-G., Ma,
C., and Gao, Z.-K. (2021). Seizure prediction in scalp
eeg based channel attention dual-input convolutional
neural network. Physica A: Statistical Mechanics and
its Applications, 584:126376.
Tautan, A.-M., Dogariu, M., and Ionescu, B. (2019). Detec-
tion of epileptic seizures using unsupervised learning
techniques for feature extraction. In 2019 41st Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pages 2377–
2381. IEEE.
Truong, N. D., Nguyen, A. D., Kuhlmann, L., Bonyadi,
M. R., Yang, J., Ippolito, S., and Kavehei, O. (2018).
Convolutional neural networks for seizure prediction
using intracranial and scalp electroencephalogram.
Neural Networks, 105:104–111.
Usman, S. M., Khalid, S., and Bashir, Z. (2021). Epileptic
seizure prediction using scalp electroencephalogram
signals. Biocybernetics and Biomedical Engineering,
41(1):211–220.
Usman, S. M., Usman, M., and Fong, S. (2017). Epilep-
tic seizures prediction using machine learning meth-
ods. Computational and mathematical methods in
medicine, 2017.
Yang, J., Wu, Z., Peng, K., Okolo, P. N., Zhang, W., Zhao,
H., and Sun, J. (2021a). Parameter selection of gaus-
sian kernel svm based on local density of training
set. Inverse Problems in Science and Engineering,
29(4):536–548.
Yang, X., Zhao, J., Sun, Q., Lu, J., and Ma, X. (2021b).
An effective dual self-attention residual network for
seizure prediction. IEEE Transactions on Neural Sys-
tems and Rehabilitation Engineering, 29:1604–1613.
Zhang, Q., Ding, J., Kong, W., Liu, Y., Wang, Q.,
and Jiang, T. (2021a). Epilepsy prediction through
optimized multidimensional sample entropy and bi-
lstm. Biomedical Signal Processing and Control,
64:102293.
Zhang, S., Chen, D., Ranjan, R., Ke, H., Tang, Y., and
Zomaya, A. Y. (2021b). A lightweight solution to
epileptic seizure prediction based on eeg synchroniza-
tion measurement. The Journal of Supercomputing,
77(4):3914–3932.
Zhang, X. and Li, H. (2022). Patient-specific seizure pre-
diction from scalp eeg using vision transformer. In
2022 IEEE 6th Information Technology and Mecha-
tronics Engineering Conference (ITOEC), volume 6,
pages 1663–1667. IEEE.
Zhao, S., Yang, J., Xu, Y., and Sawan, M. (2020). Binary
single-dimensional convolutional neural network for
seizure prediction. In 2020 IEEE International Sym-
posium on Circuits and Systems (ISCAS), pages 1–5.
BIOSIGNALS 2023 - 16th International Conference on Bio-inspired Systems and Signal Processing
132