infrastructure for connected vehicle assist and traffic
flow optimization. In VEHITS, pages 360–367.
Alzubaidi, L., Al-Shamma, O., Fadhel, M. A., Farhan, L.,
Zhang, J., and Duan, Y. (2020). Optimizing the perfor-
mance of breast cancer classification by employing the
same domain transfer learning from hybrid deep con-
volutional neural network model. Electronics, 9(3).
Cao, X., Wang, Z., Yan, P., and Li, X. (2013). Transfer
learning for pedestrian detection. Neurocomputing,
100:51–57. Special issue: Behaviours in video.
Cooks, J. (2022). [Online; accessed September, 2022].
Do
˘
gru, A., Bouarfa, S., Arizar, R., and Aydo
˘
gan, R. (2020).
Using convolutional neural networks to automate
aircraft maintenance visual inspection. Aerospace,
7(12):171.
Ghiasi, G., Cui, Y., Srinivas, A., Qian, R., Lin, T.-Y., Cubuk,
E. D., Le, Q. V., and Zoph, B. (2021). Simple copy-
paste is a strong data augmentation method for in-
stance segmentation. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 2917–2927.
G
´
ati, N. and Kiss, A. (2021). Sound classification with
transfer learning (13th joint conference on mathemat-
ics and computer science (the 13th macs), on october
1-3, 2020).
Han, R. (2020). Man walking on pedestrian lane. [Online;
accessed September, 2022].
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. (2017).
Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Hu, D. H. and Yang, Q. (2011). Transfer learning for
activity recognition via sensor mapping. In Twenty-
second international joint conference on artificial in-
telligence.
Khac, A. (2020). A group of children walking hand in
hand on unpaved road. [Online; accessed September,
2022].
Kim, R. (2021). [Online; accessed September, 2022].
Kocmi, T. and Bojar, O. (2018). Trivial transfer learning
for low-resource neural machine translation. arXiv
preprint arXiv:1809.00357.
Liang, Y., Monteiro, S. T., and Saber, E. S. (2016). Trans-
fer learning for high resolution aerial image classifica-
tion. In 2016 IEEE Applied Imagery Pattern Recogni-
tion Workshop (AIPR), pages 1–8.
Lin, T.-Y., Doll
´
ar, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. (2017a). Feature pyramid networks
for object detection. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 936–944.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017b). Focal loss for dense object detection. In
Proceedings of the IEEE international conference on
computer vision, pages 2980–2988.
Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick,
R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L.,
and Doll
´
ar, P. (2014). Microsoft coco: Common ob-
jects in context.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In European conference on com-
puter vision, pages 21–37. Springer.
Lusina, A. (2021). Unrecognizable black father with son
holding hands on city road. [Online; accessed Septem-
ber, 2022].
Mak (2021). [Online; accessed September, 2022].
Ogino, K. (2021). Asian woman and girl standing near
crosswalk. [Online; accessed September, 2022].
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep
learning library. pages 8024–8035.
Productions, P. (2021). Family crossing the street while
holding each other’s hands. [Online; accessed
September, 2022].
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information
processing systems, 28.
Shenavarmasouleh, F., Mohammadi, F. G., Amini, M. H.,
Taha, T., Rasheed, K., and Arabnia, H. R. (2021).
Drdrv3: Complete lesion detection in fundus images
using mask r-cnn, transfer learning, and lstm. arXiv
preprint arXiv:2108.08095.
Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2022).
Yolov7: Trainable bag-of-freebies sets new state-of-
the-art for real-time object detectors. arXiv preprint
arXiv:2207.02696.
Wolf, K. (2021). Kid and dog crossing the street. [Online;
accessed September, 2022].
Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y.,
and Girshick, R. (2019). Detectron2.
https://github.com/facebookresearch/detectron2.
Xie, S., Girshick, R., Doll
´
ar, P., Tu, Z., and He, K. (2017).
Aggregated residual transformations for deep neural
networks. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 5987–
5995.
Zhang, Q., Chang, X., and Bian, S. B. (2020). Vehicle-
damage-detection segmentation algorithm based on
improved mask rcnn. IEEE Access, 8:6997–7004.
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H.,
Xiong, H., and He, Q. (2020). A comprehensive sur-
vey on transfer learning. Proceedings of the IEEE,
109(1):43–76.
VEHITS 2023 - 9th International Conference on Vehicle Technology and Intelligent Transport Systems
214