ACKNOWLEDGEMENTS
The research leading to these results is funded by the
German Federal Ministry for Economic Affairs and
Climate Action within the project “Verifikations- und
Validierungsmethoden automatisierter Fahrzeuge im
urbanen Umfeld”. The authors would like to thank
the consortium for the successful cooperation.
REFERENCES
Adee, A., Gansch, R., and Liggesmeyer, P. (2021). System-
atic modeling approach for environmental perception
limitations in automated driving. In 2021 17th Eu-
ropean Dependable Computing Conference (EDCC),
pages 103–110. IEEE.
Ankan, A. and Panda, A. (2015). pgmpy: Probabilistic
graphical models using python. In Proceedings of
the 14th Python in Science Conference (SCIPY 2015).
Citeseer.
Bagschik, G. (2022). Systematischer Einsatz von Szenar-
ien f
¨
ur die Absicherung automatisierter Fahrzeuge
am Beispiel deutscher Autobahnen. Univer-
sit
¨
atsbibliothek Braunschweig.
Bagschik, G., Menzel, T., and Maurer, M. (2018). Ontol-
ogy based scene creation for the development of au-
tomated vehicles. In 2018 IEEE Intelligent Vehicles
Symposium (IV), pages 1813–1820. IEEE.
Bannour, B., Niol, J., and Crisafulli, P. (2021). Symbolic
model-based design and generation of logical scenar-
ios for autonomous vehicles validation. In 2021 IEEE
Intelligent Vehicles Symposium (IV), pages 215–222.
IEEE.
Beck, H. N., Salem, N. F., Haber, V., Rauschenbach, M.,
and Reich, J. (2022). Phenomenon-signal model: For-
malisation, graph and application.
Beringhoff, F., Greenyer, J., Roesener, C., and Tichy, M.
(2022). Thirty-one challenges in testing automated
vehicles: Interviews with experts from industry and
research. In 2022 IEEE Intelligent Vehicles Sympo-
sium (IV), pages 360–366. IEEE.
Bock, J., Krajewski, R., Moers, T., Runde, S., Vater, L.,
and Eckstein, L. (2020). The ind dataset: A drone
dataset of naturalistic road user trajectories at german
intersections. In 2020 IEEE Intelligent Vehicles Sym-
posium (IV), pages 1929–1934. IEEE.
Bussler, A., Wagener, N., P
¨
utz, A., Menzel, T., Braun, T.,
Fuchs, J., K
¨
ortke, F., Weber, H., and Glasmacher, C.
(2022). A story of scenarios - from data and knowl-
edge to scenarios for testing.
de Gelder, E. (2022). Safety assessment of automated vehi-
cles using real-world driving scenarios. PhD thesis,
Delft University of Technology.
de Gelder, E., Hof, J., Cator, E., Paardekooper, J.-P.,
den Camp, O. O., Ploeg, J., and de Schutter, B.
(2022). Scenario parameter generation method and
scenario representativeness metric for scenario-based
assessment of automated vehicles. IEEE Transactions
on Intelligent Transportation Systems, 23(10):18794–
18807.
Ding, W., Xu, C., Arief, M., Lin, H., Li, B., and Zhao, D.
(2022). A survey on safety-critical driving scenario
generation – a methodological perspective.
Fan, J. and Li, R. (2006). Statistical challenges with high
dimensionality: Feature selection in knowledge dis-
covery.
Friedman, G. J. and Phan, P. (2017). Constraint Theory,
volume 23. Springer International Publishing, Cham.
Hu, M. and Li, Y. (2017). Drivers’ avoidance patterns in
near-collision intersection conflicts. In 2017 IEEE
20th International Conference on Intelligent Trans-
portation Systems (ITSC), pages 1–6. IEEE.
Li, A., Chen, S., Sun, L., Zheng, N., Tomizuka, M., and
Zhan, W. (2022). Scegene: Bio-inspired traffic sce-
nario generation for autonomous driving testing. IEEE
Transactions on Intelligent Transportation Systems,
23(9):14859–14874.
Lotto, K., Nagler, T., and Radic, M. (2022). Modeling
stochastic data using copulas for application in vali-
dation of autonomous driving.
Para, W., Guerrero, P., Kelly, T., Guibas, L., and Wonka, P.
(2021). Generative layout modeling using constraint
graphs. In 2021 IEEE/CVF International Conference
on Computer Vision (ICCV). IEEE.
Pearl, J. and Russell, S. (2000). Bayesian networks. UCLA,
Department of Statistics Papers.
Pegasus Project Consortium (2019). Pegasus method - an
overview.
Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., and Dier-
meyer, F. (2020). Survey on scenario-based safety
assessment of automated vehicles. IEEE Access,
8:87456–87477.
Wachenfeld, W. and Winner, H. (2016). The release
of autonomous vehicles. In Maurer, M., Gerdes,
J. C., Lenz, B., and Winner, H., editors, Autonomous
Driving, pages 425–449. Springer Berlin Heidelberg,
Berlin, Heidelberg.
Zhu, Y., Zhou, K., Nie, J.-Y., Liu, S., and Dou, Z. (2021).
Neural sentence ordering based on constraint graphs.
Proceedings of the AAAI Conference on Artificial In-
telligence, 35(16):14656–14664.
VEHITS 2023 - 9th International Conference on Vehicle Technology and Intelligent Transport Systems
222