ImageNet (2021). Imagenet large scale visual recognition
challenge (ilsvrc).
Kausar, T., Wang, M., Idrees, M., and Lu, Y. (2019). Hwd-
cnn: Multi-class recognition in breast histopathology
with haar wavelet decomposed image based convolu-
tion neural network. Biocybernetics and Biomedical
Engineering, 39(4):967–982.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. nature, 521(7553):436.
Lin, M., Chen, Q., and Yan, S. (2013). Network in network.
Mahendran, A. and Vedaldi, A. (2016). Visualizing
deep convolutional neural networks using natural pre-
images. International Journal of Computer Vision,
120.
Mordvintsev, A., Olah, C., and Tyka, M. (2015). Inception-
ism: Going deeper into neural networks.
Nanni, L., Brahnam, S., Ghidoni, S., and Maguolo, G.
(2019). General purpose (genp) bioimage ensemble of
handcrafted and learned features with data augmenta-
tion. CoRR, abs/1904.08084.
Nanni, L., Ghidoni, S., and Brahnam, S. (2018). Ensemble
of convolutional neural networks for bioimage classi-
fication. Applied Computing and Informatics.
Nanni, L., Ghidoni, S., Brahnam, S., Liu, S., and Zhang,
L. (2020). Ensemble of handcrafted and deep learned
features for cervical cell classification. In Nanni, L.,
Brahnam, S., Brattin, R., Ghidoni, S., and Jain, L., ed-
itors, Deep Learners and Deep Learner Descriptors
for Medical Applications. Intelligent Systems Refer-
ence Library, volume 186, pages 117–135. Springer.
of Waikato, T. U. (2019). weka weka 3 - data mining with
open source machine learning software in java.
Rajaraman, S., Candemir, S., Kim, I., Thoma, G., and An-
tani, S. (2018). Visualization and interpretation of
convolutional neural network predictions in detecting
pneumonia in pediatric chest radiographs. Applied
Sciences, 8(10):1715.
Reyes, M., Meier, R., Pereira, S., Silva, C. A., Dahlweid,
F.-M., Tengg-Kobligk, H. v., Summers, R. M., and
Wiest, R. (2020). On the interpretability of artificial
intelligence in radiology: challenges and opportuni-
ties. Radiology: artificial intelligence, 2(3):e190043.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”why
should i trust you?”: Explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’16, page 1135–1144, New
York, NY, USA. Association for Computing Machin-
ery.
Roberto, G. F., Lumini, A., Neves, L. A., and do Nasci-
mento, M. Z. (2021). Fractal neural network: A new
ensemble of fractal geometry and convolutional neu-
ral networks for the classification of histology images.
Expert Systems with Applications, 166:114103.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252.
Sethy, P. K. and Behera, S. K. (2022). Automatic classifica-
tion with concatenation of deep and handcrafted fea-
tures of histological images for breast carcinoma diag-
nosis. Multimedia Tools and Applications, 81:9631–
9643.
Shallu and Mehra, R. (2018). Breast cancer histology im-
ages classification: Training from scratch or transfer
learning? ICT Express, 4(1):248.
Silva, A. B., Martins, A. S., Tosta, T. A. A., Neves, L. A.,
Servato, J. P. S., de Ara
´
ujo, M. S., de Faria, P. R., and
do Nascimento, M. Z. (2022). Computational analysis
of histological images from hematoxylin and eosin-
stained oral epithelial dysplasia tissue sections. Expert
Systems with Applications, 193:116456.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Sirinukunwattana, K., Pluim, J. P., Chen, H., Qi, X., Heng,
P.-A., Guo, Y. B., Wang, L. Y., Matuszewski, B. J.,
Bruni, E., Sanchez, U., et al. (2017). Gland segmen-
tation in colon histology images: The glas challenge
contest. Medical image analysis, 35:489–502.
Suzuki, K., Roseboom, W., Schwartzman, D. J., and Seth,
A. K. (2017). A deep-dream virtual reality platform
for studying altered perceptual phenomenology. Sci-
entific reports, 7(1):1–11.
Tenguam, J. J., Da Costa Longo, L. H., Silva, A. B.,
De Faria, P. R., Do Nascimento, M. Z., and Neves,
L. A. (2022). Classification of h&e images explor-
ing ensemble learning with two-stage feature selec-
tion. In 2022 29th International Conference on Sys-
tems, Signals and Image Processing (IWSSIP), vol-
ume CFP2255E-ART, pages 1–4.
To
˘
gac¸ar, M., C
¨
omert, Z., and Ergen, B. (2021). Enhanc-
ing of dataset using deepdream, fuzzy color image
enhancement and hypercolumn techniques to detec-
tion of the alzheimer’s disease stages by deep learning
model. Neural Computing and Applications, pages 1–
13.
Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S.,
and Moore, J. H. (2018). Relief-based feature selec-
tion: Introduction and review. Journal of biomedical
informatics, 85:189–203.
Vedaldi, A. and Zisserman, A. (2013). Deep inside con-
volutional networks: Visualising image classification
models and saliency maps. preprint.
Watanabe, K., Kobayashi, T., and Wada, T. (2016). Semi-
supervised feature transformation for tissue image
classification. PLoS ONE, 11(12):1–20.
Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., and Lipson,
H. (2015). Understanding neural networks through
deep visualization.
Zeng, Z., Zhang, H., Zhang, R., and Yin, C. (2015). A
novel feature selection method considering feature in-
teraction. Pattern Recognition, 48(8):2656–2666.
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Tor-
ralba, A. (2016). Learning deep features for discrim-
inative localization. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2921–2929.
ICEIS 2023 - 25th International Conference on Enterprise Information Systems
364