e-peas (2022a). Aem10330 solar energy harvesting. https://
e-peas.com/wp-content/uploads/2021/08/Datasheet
AEM10330 solar energy harvesting IC REV1.1.pdf.
Last checked on Aug 18, 2022.
e-peas (2022b). Aem10941 solar energy harvesting.
https://e-peas.com/wp-content/uploads/2021/03/e-
peas-AEM10941-datasheet-energy-harvesting.pdf.
Last checked on Aug 18, 2022.
Hamers, R. J. (2020). Energy storage materials as emerg-
ing nano-contaminants. Chemical Research in Toxi-
cology, 33(5):1074–1081. PMID: 32275142.
Hofman, J., Nikolaou, M., Shantharam, S. P., Stroobants,
C., Weijs, S., and La Manna, V. P. (2022). Distant
calibration of low-cost pm and no2 sensors; evidence
from multiple sensor testbeds. Atmospheric Pollution
Research, 13(1):101246.
Huybrechts, T., Reiter, P., Mercelis, S., Famaey, J., Latr
´
e,
S., and Hellinckx, P. (2021). Automated testbench
for hybrid machine learning-based worst-case energy
consumption analysis on batteryless iot devices. En-
ergies, 14(13).
J & A (2022). J & a electronics li-ion cyclindrical data
sheet. https://www.olimex.com/Products/Power/
BATTERY-LIPO2200mAh/resources/JA18650-3.7V-
2200mAh-Cell-Specification-150112.pdf. Last
checked on Aug 19, 2022.
Jetperch (2022). Joulescope. https://www.joulescope.com/.
Last checked on Aug 31, 2022.
Ji, W., Chan, C., Loh, J., Choo, F., and Chen, L. (2009).
Solar radiation prediction using statistical approaches.
In 2009 7th International Conference on Informa-
tion, Communications and Signal Processing (ICICS),
pages 1–5.
Kang, D. H. P., Chen, M., and Ogunseitan, O. A. (2013).
Potential environmental and human health impacts
of rechargeable lithium batteries in electronic waste.
Environmental Science & Technology, 47(10):5495–
5503. PMID: 23638841.
Kansal, A., Hsu, J., Zahedi, S., and Srivastava, M. B.
(2007). Power management in energy harvesting sen-
sor networks. ACM Trans. Embed. Comput. Syst.,
6(4):32–es.
Khanna, A., Mueller, T., Stangl, R. A., Hoex, B., Basu,
P. K., and Aberle, A. G. (2013). A fill factor loss
analysis method for silicon wafer solar cells. IEEE
Journal of Photovoltaics, 3(4):1170–1177.
Kjellby, R. A., Cenkeramaddi, L. R., Frøytlog, A., Lozano,
B. B., Soumya, J., and Bhange, M. (2019). Long-
range & self-powered iot devices for agriculture &
aquaponics based on multi-hop topology. In 2019
IEEE 5th World Forum on Internet of Things (WF-
IoT), pages 545–549.
Kjellby, R. A., Cenkeramaddi, L. R., Johnsrud, T. E.,
Løtveit, S. E., Jevne, G., Beferull-Lozano, B., and
Soumya, J. (2018). Self-powered iot device based
on energy harvesting for remote applications. In
2018 IEEE International Conference on Advanced
Networks and Telecommunications Systems (ANTS),
pages 1–4.
Kosunalp, S. (2016). A new energy prediction algorithm
for energy-harvesting wireless sensor networks with
q-learning. IEEE Access, 4:5755–5763.
Muhammad, Qureshi, H. K., Saleem, U., Saleem, M., Pit-
sillides, A., and Lestas, M. (2017). Harvested en-
ergy prediction schemes for wireless sensor networks:
Performance evaluation and enhancements. Wireless
Communications and Mobile Computing, 2017.
Noh, D. K. and Kang, K. (2011). Balanced energy al-
location scheme for a solar-powered sensor system
and its effects on network-wide performance. Jour-
nal of Computer and System Sciences, 77(5):917–932.
PMECT 2009/ICCCN 2009.
Nordic Semiconductor (2022). nrf52840 dk.
https://www.nordicsemi.com/Products/Development-
hardware/nrf52840-dk. Last checked on Aug 18,
2022.
Ramson, S. R. J., Le
´
on-Salas, W. D., Brecheisen, Z., Fos-
ter, E. J., Johnston, C. T., Schulze, D. G., Filley, T.,
Rahimi, R., Soto, M. J. C. V., Bolivar, J. A. L., and
M
´
alaga, M. P. (2021). A self-powered, real-time, lo-
rawan iot-based soil health monitoring system. IEEE
Internet of Things Journal, 8(11):9278–9293.
Recas Piorno, J., Bergonzini, C., Atienza, D., and Simu-
nic Rosing, T. (2009). Prediction and management
in energy harvested wireless sensor nodes. In 2009
1st International Conference on Wireless Communi-
cation, Vehicular Technology, Information Theory and
Aerospace & Electronic Systems Technology, pages 6–
10.
Rodriguez Arreola, A., Verykios, T. D., Gurrola Navarro,
M. A., and Calvillo Cortes, C. F. (2022). Federated
time persistency in intermittently powered iot sys-
tems. Journal of Systems Architecture, 130:102667.
Sabovic, A., Sultania, A. K., Delgado, C., De Roeck, L.,
and Famaey, J. (2022). An energy-aware task sched-
uler for energy harvesting battery-less iot devices.
IEEE Internet of Things Journal.
Seed Studio (2022). Small solar panel 81x137mm
1.5w. https://www.seeedstudio.com/1-5W-Solar-
Panel-81X137.html. Last checked on Nov 18, 2022.
Shafik, R., Yakovlev, A., and Das, S. (2018). Real-
power computing. IEEE Transactions on Computers,
67(10):1445–1461.
Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., and Mus-
taqim, M. (2020). Internet of things (iot) for next-
generation smart systems: A review of current chal-
lenges, future trends and prospects for emerging 5g-
iot scenarios. IEEE Access, 8:23022–23040.
Shaikh, F. K. and Zeadally, S. (2016). Energy harvest-
ing in wireless sensor networks: A comprehensive re-
view. Renewable and Sustainable Energy Reviews,
55:1041–1054.
Stricker, N. and Thiele, L. (2022). Accurate onboard pre-
dictions for indoor energy harvesting using random
forests. In 2022 11th Mediterranean Conference on
Embedded Computing (MECO), pages 1–6.
Tanha, S. N., Mim, S. A., Roy, P., and Razzaque, M. A.
(2021). Prediction of energy harvesting in solar pow-
ered small cells networks. In 2021 3rd International
An Energy Management Unit for Predictive Solar Energy Harvesting IoT
49