ment in industrial control systems. International Jour-
nal of Critical Infrastructure Protection, 9:52–80.
Kohonen, T. (2001). Self-Organizing Maps. Springer, 3rd
edition.
Kohonen, T. et al. (2014). MATLAB implementations and
applications of the self-organizing map. Unigrafia Oy,
Helsinki, Finland, 2.
Langner, R. (2011). Stuxnet: Dissecting a Cyberwarfare
Weapon. IEEE Security & Privacy, 9(3):49–51.
Levenshtein, V. I. et al. (1966). Binary codes capable of cor-
recting deletions, insertions, and reversals. In Soviet
physics doklady, volume 10, pages 707–710. Soviet
Union.
Marchetti, M., Colajanni, M., and Manganiello, F. (2011).
Framework and models for multistep attack detection.
International Journal of Security and Its Applications,
5(4):73–90.
Navarro, J., Deruyver, A., and Parrend, P. (2018). A system-
atic survey on multi-step attack detection. Computers
& Security, 76:214–249.
P
´
erez, S. I., Moral-Rubio, S., and Criado, R. (2021). A new
approach to combine multiplex networks and time se-
ries attributes: Building intrusion detection systems
(IDS) in cybersecurity. Chaos, Solitons & Fractals,
150:111143.
Phillips, C. and Swiler, L. P. (1998). A graph-based system
for network-vulnerability analysis. In Proceedings of
the 1998 workshop on New security paradigms, pages
71–79.
Qu, X., Yang, L., Guo, K., Ma, L., Sun, M., Ke, M., and
Li, M. (2021). A survey on the development of self-
organizing maps for unsupervised intrusion detection.
Mobile networks and applications, 26(2):808–829.
Ross, R. S. et al. (2018). Risk management framework for
information systems and organizations: A system life
cycle approach for security and privacy.
Sadighian, A., Zargar, S. T., Fernandez, J. M., and Lemay,
A. (2013). Semantic-based context-aware alert fusion
for distributed intrusion detection systems. In 2013
International Conference on Risks and Security of In-
ternet and Systems (CRiSIS), pages 1–6. IEEE.
Sadoddin, R. and Ghorbani, A. A. (2009). An incremen-
tal frequent structure mining framework for real-time
alert correlation. computers & security, 28(3-4):153–
173.
Scheirer, W. J., de Rezende Rocha, A., Sapkota, A., and
Boult, T. E. (2012). Toward open set recognition.
IEEE transactions on pattern analysis and machine
intelligence, 35(7):1757–1772.
Schuster, F., Paul, A., and K
¨
onig, H. (2013). Towards
Learning Normality for Anomaly Detection in Indus-
trial Control Networks. In IFIP International Confer-
ence on Autonomous Infrastructure, Management and
Security, pages 61–72. Springer.
Sch
¨
utze, H., Manning, C. D., and Raghavan, P. (2008). In-
troduction to Information Retrieval, volume 39. Cam-
bridge University Press Cambridge.
Selzer, A., Sch
¨
oning, H., Laabs, M., Dukanovic, S., and
Henkel, T. (2020). IT-Sicherheit in Industrie 4.0:
Mit Bedrohungen und Risiken umgehen. Kohlhammer
Verlag.
Sen,
¨
O., van der Velde, D., Wehrmeister, K. A., Hacker, I.,
Henze, M., and Andres, M. (2022). On using contex-
tual correlation to detect multi-stage cyber attacks in
smart grids. Sustainable Energy, Grids and Networks.
Shannon, C. E. (1948). A mathematical theory of communi-
cation. The Bell system technical journal, 27(3):379–
423.
Smith, R., Japkowicz, N., Dondo, M., and Mason, P. (2008).
Using unsupervised learning for network alert corre-
lation. In Conference of the Canadian Society for
Computational Studies of Intelligence, pages 308–
319. Springer.
Souza, L. M. S. d., Spiess, P., Guinard, D., K
¨
ohler, M.,
Karnouskos, S., and Savio, D. (2008). Socrades: A
web service based shop floor integration infrastruc-
ture. In The internet of things, pages 50–67. Springer.
The MITRE Corporation (2021). Cve-2021-44228.
Available at: https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2021-44228, last accessed on
04.08.2022.
Tuptuk, N. and Hailes, S. (2018). Security of smart manu-
facturing systems. Journal of manufacturing systems,
47:93–106.
Vielberth, M., B
¨
ohm, F., Fichtinger, I., and Pernul, G.
(2020). Security operations center: A systematic
study and open challenges. IEEE Access, 8:227756–
227779.
Youden, W. J. (1950). Index for rating diagnostic tests. Can-
cer, 3(1):32–35.
Zhang, Z., Ho, P.-H., Lin, X., and Shen, H. (2006). Janus:
A two-sided analytical model for multi-stage coor-
dinated attacks. In International Conference on In-
formation Security and Cryptology, pages 136–154.
Springer.
IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security
60