REFERENCES
Alonso, P. J. (2016, October). SETA, a suite-independent
agile analytical framework. Master thesis, Polytechnic
Univ. of Catalonia, BarcelonaTech.
Armbrust, M., Das, T., Sun, L., & others. (2020). Delta
lake: high-performance ACID table storage over cloud
object stores. Proceedings of the VLDB Endowment,
13, 3411–3424.
Armbrust, M., Ghodsi, A., Xin, R., & others. (2021).
Lakehouse: a new generation of open platforms that
unify data warehousing and advanced analytics.
Proceedings of CIDR.
Azeroual, O., Schöpfel, J., Ivanovic, D., & others. (2022).
Combining Data Lake and Data Wrangling for
Ensuring Data Quality in CRIS. CRIS2022: 15th
International Conference on Current Research
Information Systems.
Begoli, E., Goethert, I., & Knight, K. (2021). A Lakehouse
Architecture for the Management and Analysis of
Heterogeneous Data for Biomedical Research and
Mega-biobanks. 2021 IEEE International Conference
on Big Data, (pp. 4643–4651).
Behm, A., Palkar, S., Agarwal, U., & others. (2022).
Photon: A Fast Query Engine for Lakehouse Systems.
Proceedings of the 2022 Internat. Conf. on
Management of Data, (pp. 2326–2339).
Bose, R. (2009, March). Advanced analytics: opportunities
and challenges. Industrial Management & Data
Systems, 109, 155–172.
Chaudhuri, S., & Dayal, U. (1997, March). An Overview of
Data Warehousing and OLAP Technology. SIGMOD
Rec., 26, 65–74.
Codd, E. F. (1990). The relational model for database
management: version 2. Addison-Wesley Longman
Publishing Co., Inc.
Codd, E. F., Codd, S. B., & Salley, C. T. (1993). Providing
OLAP (on-line analytical processing) to user-analysts.
An IT Mandate. White Paper. Arbor Software
Corporation, 4.
Dageville, B., Cruanes, T., Zukowski, M., Antonov, V.,
Avanes, A., Bock, J., Unterbrunner, P. (2016, June).
The Snowflake Elastic Data Warehouse. Proceedings
of the 2016 International Conference on Management
of Data. ACM.
Davenport, T. H., & Ronanki, R. (2018). Artificial
intelligence for the real world. Harvard business
review, 96, 108–116.
Eckerson, W. (2020, June 8). All Hail, the Data Lakehouse!
(If Built on a Modern Data Warehouse). Retrieved
December 8, 2022, from https://www.eckerson.com/
articles/all-hail-the-data-lakehouse-if-built-on-a-moder
n-data-warehouse
Eichler, R., Giebler, C., Gröger, C., & others. (2021).
Modeling metadata in data lakes—A generic model.
Data & Knowledge Engineering, 136, 101931.
Feinberg, D., Russom, P., & Showell, N. (2022, June).
Hype Cycle for Data Management. Gartner Inc.
Fourny, G., Dao, D., Cikis, C. B., & others. (2021).
RumbleML: program the lakehouse with JSONiq.
arXiv.
Giebler, C., Gröger, C., Hoos, E., & others. (2019).
Leveraging the data lake: Current state and challenges.
Internat. Conf. on Big Data Analytics and Knowledge
Discovery, (pp. 179–188).
Giebler, C., Gröger, C., Hoos, E., & others. (2020). A Zone
Reference Model for Enterprise-Grade Data Lake
Management.
IEEE 24th Internat. Enterprise
Distributed Object Computing Conf., (pp. 57-66).
Giebler, C., Gröger, C., Hoos, E., & others. (2021). The
Data Lake Architecture Framework. BTW 2021.
Gröger, C. (2021). There is no AI without data.
Communications of the ACM, 64, 98–108.
Gröger, C. (2022). Industrial analytics–An overview. it-
Information Technology.
Gröger, C., Schwarz, H., & Mitschang, B. (2014). The
Manufacturing Knowledge Repository. Proceedings of
the 16th International Conference on Enterprise
Information Systems, (pp. 39-51).
Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts
and techniques. Morgan kaufmann.
Hansen, J. (2021, April 1). Selling the Data Lakehouse.
Retrieved December 8, 2022, from
https://medium.com/snowflake/a9f25f67c906
Härder, T., & Reuter, A. (1983). Principles of transaction-
oriented database recovery. ACM computing surveys
(CSUR), 15, 287–317.
Hlupić, T., Oreščanin, D., Ružak, D., & others. (2022). An
Overview of Current Data Lake Architecture Models.
2022 45th Jubilee International Convention on
Information, Communication and Electronic
Technology, (pp. 1082–1087).
Inmon, B., Levins, M., & Srivastava, R. (2021, October).
Building the Data Lakehouse. TECHNICS PUBN LLC.
Inmon, W. H. (2005). Building the data warehouse. John
wiley & sons.
Kejariwal, A., Kulkarni, S., & Ramasamy, K. (2017). Real
Time Analytics: Algorithms and Systems. arXiv.
Kreps, J. (2014, July). Questioning the Lambda
Architecture. Retrieved December 8, 2022, from
https://www.oreilly.com/radar/questioning-the-
lambda-architecture/
Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., & Hoffmann,
M. (2014, June). Industry 4.0. Business & Information
Systems Engineering, 6, 239–242.
Leano, H. (2020, November). Delta vs. Lambda: Why
Simplicity Trumps Complexity for Data Pipelines.
Retrieved December 8, 2022, from
https://www.databricks.com/blog/2020/11/20/delta-vs-
lambda-why-simplicity-trumps-complexity-for-data-
pipelines.html
L'Esteve, R. (2022, July). The Azure Data Lakehouse
Toolkit. Apress.
Oreščanin, D., & Hlupić, T. (2021). Data Lakehouse - a
Novel Step in Analytics Architecture. 44th Internat.
Conv. on Information, Communication and Electronic
Technology, (pp. 1242-1246).