autonomous driving. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 11621–11631.
Cervero, R. (2000). Growing smart by linking transporta-
tion and urban development. Virginia Environmental
Law Journal, pages 357–374.
Cheng, N., Lyu, F., Chen, J., Xu, W., Zhou, H., Zhang, S.,
and Shen, X. (2018). Big data driven vehicular net-
works. IEEE Network, 32(6):160–167.
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and
Koltun, V. (2017). CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Confer-
ence on Robot Learning, pages 1–16.
Foote, T. (2013). tf: The transform library. In Technologies
for Practical Robot Applications (TePRA), 2013 IEEE
International Conference on, Open-Source Software
workshop, pages 1–6.
for Standardization of Automation, A. and Systems, M.
(2022). Asam opendrive. https://www.asam.net/
standards/detail/opendrive/. Last accessed 09 Novem-
ber 2022.
Ge, X., Li, Z., and Li, S. (2017). 5g software defined ve-
hicular networks. IEEE Communications Magazine,
55(7):87–93.
He, J., Tang, Z., Fu, X., Leng, S., Wu, F., Huang, K., Huang,
J., Zhang, J., Zhang, Y., Radford, A., Li, L., and
Xiong, Z. (2019). Cooperative connected autonomous
vehicles (cav): Research, applications and challenges.
In 2019 IEEE 27th International Conference on Net-
work Protocols (ICNP), pages 1–6.
Hoffmann, G. M., Tomlin, C. J., Montemerlo, M., and
Thrun, S. (2007). Autonomous automobile trajectory
tracking for off-road driving: Controller design, ex-
perimental validation and racing. In 2007 American
Control Conference, pages 2296–2301. IEEE.
International, S. (2021). Sae international levels of driving
automation. https://www.sae.org/binaries/content/
assets/cm/content/blog/sae-j3016-visual-chart 5.3.
21.pdf. Last accessed 03 November 2022.
Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S.,
Hirabayashi, M., Kitsukawa, Y., Monrroy, A., Ando,
T., Fujii, Y., and Azumi, T. (2018). Autoware on
board: Enabling autonomous vehicles with embedded
systems. In 2018 ACM/IEEE 9th International Con-
ference on Cyber-Physical Systems (ICCPS), pages
287–296.
Kukkala, V. K., Tunnell, J., Pasricha, S., and Bradley, T.
(2018). Advanced driver-assistance systems: A path
toward autonomous vehicles. IEEE Consumer Elec-
tronics Magazine, 7(5):18–25.
Lee, J.-G., Kim, K. J., Lee, S., and Shin, D.-H. (2015). Can
autonomous vehicles be safe and trustworthy? effects
of appearance and autonomy of unmanned driving
systems. International Journal of Human–Computer
Interaction, 31(10):682–691.
Liao, Y., Xie, J., and Geiger, A. (2021). KITTI-
360: A novel dataset and benchmarks for urban
scene understanding in 2d and 3d. arXiv preprint
arXiv:2109.13410.
Marin-Plaza, P., Hussein, A., Martin, D., and de la Escalera,
A. (2019). icab use case for ros-based architecture.
Robotics and Autonomous Systems, 118:251–262.
Marin-Plaza, P., Yag
¨
ue-Cuevas, D., Royo, F., de Miguel,
M. A., Moreno, F. M., Ruiz-de-la Cuadra, A.,
Viadero-Monasterio, F., Garcia, J., San Roman, J. L.,
and Armingol, J. M. (2021). Project ares: Driverless
transportation system. challenges and approaches in
an unstructured road. Electronics, 10(15).
Metta, G., Fitzpatrick, P., and Natale, L. (2006). Yarp: yet
another robot platform. International Journal of Ad-
vanced Robotic Systems, 3(1):8.
Michel, G. and Du Lac, N. (2009). The rtmaps soft-
ware, an integration platform for multi-parnter coop-
erative projects developing multi-sensor applications.
In 16th ITS World Congress and Exhibition on Intelli-
gent Transport Systems.
Moore, T. and Stouch, D. (2014). A generalized extended
kalman filter implementation for the robot operating
system. In Proceedings of the 13th International Con-
ference on Intelligent Autonomous Systems (IAS-13).
Ortega, V., Bouchmal, F., and Monserrat, J. F. (2018).
Trusted 5g vehicular networks: Blockchains and
content-centric networking. IEEE Vehicular Technol-
ogy Magazine, 13(2):121–127.
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., Ng, A. Y., et al. (2009). Ros: an
open-source robot operating system. In ICRA work-
shop on open source software. Kobe, Japan.
Rao, Q. and Frtunikj, J. (2018). Deep learning for self-
driving cars: Chances and challenges. In Proceed-
ings of the 1st International Workshop on Software
Engineering for AI in Autonomous Systems, SEFAIS
’18, page 35–38, New York, NY, USA. Association
for Computing Machinery.
Seif, H. G. and Hu, X. (2016). Autonomous driving in the
icity—hd maps as a key challenge of the automotive
industry. Engineering, 2(2):159–162.
Shengbo, L., Yang, G., Lian, H., Hongbo, G., Jingliang,
D., Shuang, L., Yu, W., Bo, C., Keqiang, L., Wei, R.,
et al. (2019). Key technique of deep neural network
and its applications in autonomous driving. Journal of
Automotive Safety and Energy, 10(2):119.
Stroescu, A., Cherniakov, M., and Gashinova, M. (2019).
Classification of high resolution automotive radar im-
agery for autonomous driving based on deep neural
networks. In 2019 20th International Radar Sympo-
sium (IRS), pages 1–10.
WONSang-Yeon, JEONYoung-Jae, JEONGHyun-Woo,
and KWONChan-Oh (2020). A comparison of ko-
rea standard hd map for actual driving support of au-
tonomous vehicles and analysis of application layers.
Journal of the Korean Association of Geographic In-
formation Studies, 23(3):132–145.
Yag
¨
ue-Cuevas, D., Ru
´
ız-de-la Cuadra, A., Mar
´
ın-Plaza, P.,
and Mar
´
ıa-Armingol, J. (2021). Optimizacion del en-
torno de simulaci
´
on para el depurado de arquitectura
software en veh
´
ıculos aut
´
onomos. pages 857–861.
Yang, Y. and Hua, K. (2019). Emerging technologies for 5g-
enabled vehicular networks. IEEE Access, 7:181117–
181141.
VEHITS 2023 - 9th International Conference on Vehicle Technology and Intelligent Transport Systems
272