Bracamonte, V., Hidano, S., Tesfay, W. B., and Kiyomoto,
S. (2019). User study of the effectiveness of a pri-
vacy policy summarization tool. In International Con-
ference on Information Systems Security and Privacy,
pages 186–206. Springer.
Chang, Y., Wong, S. F., Libaque-Saenz, C. F., and Lee, H.
(2018). The role of privacy policy on consumers’ per-
ceived privacy. Government Information Quarterly,
35(3):445–459.
Culnan, M. J. (2019). Policy to avoid a privacy disaster.
Journal of the Association for Information Systems,
20(6):1.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Goel, S., Williams, K., and Dincelli, E. (2017). Got
phished? internet security and human vulnerability.
Journal of the Association for Information Systems,
18(1):2.
Haggag, O., Grundy, J., Abdelrazek, M., and Haggag, S.
(2022). A large scale analysis of mhealth app user
reviews. In Empir Software Eng 27, 196 (2022).
Halevi, T., Lewis, J., and Memon, N. (2013). A pilot study
of cyber security and privacy related behavior and per-
sonality traits. In Proceedings of the 22nd interna-
tional conference on world wide web, pages 737–744.
Harkous, H., Fawaz, K., Lebret, R., Schaub, F., Shin, K. G.,
and Aberer, K. (2018). Polisis: Automated analysis
and presentation of privacy policies using deep learn-
ing. In 27th USENIX Security Symposium (USENIX
Security 18), pages 531–548.
Karagiannopoulos, V., Kirby, A., Ms, S. O.-M., and Sug-
iura, L. (2021). Cybercrime awareness and victimisa-
tion in individuals over 60 years: A portsmouth case
study. Computer Law & Security Review, 43:105615.
Lee, H., Wong, S. F., and Chang, Y. (2016). Confirming the
effect of demographic characteristics on information
privacy concerns.
Lee, H., Wong, S. F., Oh, J., and Chang, Y. (2019). Infor-
mation privacy concerns and demographic character-
istics: Data from a korean media panel survey. Gov-
ernment Information Quarterly, 36(2):294–303.
Li, Y. (2022). Cross-cultural privacy differences. In Modern
Socio-Technical Perspectives on Privacy, pages 267–
292. Springer, Cham.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized bert pre-
training approach. arXiv preprint arXiv:1907.11692.
Lonergan Research (2020). Australian community attitudes
to privacy survey 2020.
McCormac, A., Zwaans, T., Parsons, K., Calic, D., Butavi-
cius, M., and Pattinson, M. (2017). Individual differ-
ences and information security awareness. Computers
in Human Behavior, 69:151–156.
McDonald, A. M. and Cranor, L. F. (2008). The cost of
reading privacy policies. Isjlp, 4:543.
Milne, G. R., Rohm, A. J., and Bahl, S. (2004). Consumers’
protection of online privacy and identity. Journal of
Consumer Affairs, 38(2):217–232.
Nagel, S. (2016). Cc-news.
N
¨
asi, M., Oksanen, A., Keipi, T., and R
¨
as
¨
anen, P. (2015).
Cybercrime victimization among young people: a
multi-nation study. Journal of Scandinavian Studies in
Criminology and Crime Prevention, 16(2):203–210.
Neupane, A., Saxena, N., Maximo, J. O., and Kana, R.
(2016). Neural markers of cybersecurity: An fmri
study of phishing and malware warnings. IEEE
Transactions on information forensics and security,
11(9):1970–1983.
Ngo, F. T. and Paternoster, R. (2011). Cybercrime victim-
ization: An examination of individual and situational
level factors. International Journal of Cyber Crimi-
nology, 5(1):773.
Pratama, A. R. and Firmansyah, F. M. (2021). Until you
have something to lose! loss aversion and two-factor
authentication adoption. Applied Computing and In-
formatics, (ahead-of-print).
Pratama, A. R., Firmansyah, F. M., and Rahma, F. (2022).
Security awareness of single sign-on account in the
academic community: the roles of demographics, pri-
vacy concerns, and big-five personality. PeerJ Com-
puter Science, 8:e918.
Reyns, B. W. (2013). Online routines and identity theft vic-
timization: Further expanding routine activity theory
beyond direct-contact offenses. Journal of Research
in Crime and Delinquency, 50(2):216–238.
Reyns, B. W. and Henson, B. (2016). The thief with a
thousand faces and the victim with none: Identify-
ing determinants for online identity theft victimiza-
tion with routine activity theory. International jour-
nal of offender therapy and comparative criminology,
60(10):1119–1139.
Schreuders, C. et al. (2019). Understanding cybercrime
victimisation: modelling the local area variations in
routinely collected cybercrime police data using latent
class analysis. International Journal of Cyber Crimi-
nology, 13(2):493–510.
Sigmund, T. (2021). Attention paid to privacy policy state-
ments. Information, 12(4):144.
ˇ
Skrinjari
´
c, B., Budak, J., and
ˇ
Zokalj, M. (2017a). The effect
of personality traits on online privacy concern. Radni
materijali EIZ-a, (2):5–29.
ˇ
Skrinjari
´
c, B., Budak, J., and
ˇ
Zokalj, M. (2017b). The effect
of personality traits on online privacy concern. Radni
materijali EIZ-a, (2):5–29.
Solovyeva, E. B. and Abdullah, A. (2022). Comparison of
different machine learning approaches to text classi-
fication. In 2022 Conference of Russian Young Re-
searchers in Electrical and Electronic Engineering
(ElConRus), pages 1427–1430. IEEE.
Srinath, M., Wilson, S., and Giles, C. L. (2020). Privacy at
scale: Introducing the privaseer corpus of web privacy
policies. arXiv preprint arXiv:2004.11131.
Steinfeld, N. (2016). ”i agree to the terms and condi-
tions”:(how) do users read privacy policies online? an
A Step to Achieve Personalized Human Centric Privacy Policy Summary
393