Gonzalez RC, Woods RE. Digital Image Processing. 4th
edition. New York, NY: Pearson; 2017. http://14.
139.186.253/2354/1/67747.pdf
Gruber, N., & Jockisch, A. (2020). Are GRU cells more
specific and LSTM cells more sensitive in motive
classification of text?. Frontiers in artificial
intelligence, 3, 40. https://doi.org/10.3389/frai.2020.
00040
Guo, M. H., Xu, T. X., Liu, J. J., Liu, Z. N., Jiang, P. T.,
Mu, T. J., ... & Hu, S. M. (2022). Attention mechanisms
in computer vision: A survey. Computational Visual
Media, 1-38. https://doi.org/10.1007/s41095-022-
0271-y
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735-1780. DOI:
10.1162/neco.1997.9.8.1735
Hu, Y., Lu, M., & Lu, X. (2018, November). Spatial-
temporal fusion convolutional neural network for
simulated driving behavior recognition. In 2018 15th
International Conference on Control, Automation,
Robotics and Vision (ICARCV) (pp. 1271-1277).
IEEE. DOI: 10.1109/ICARCV.2018.8581201
Hu, Y., Lu, M., & Lu, X. (2019). Driving behaviour
recognition from still images by using multi-stream
fusion CNN. Machine Vision and Applications, 30(5),
851-865. https://doi.org/10.1007/s00138-018-0994-z
Hu, Y., Lu, M., & Lu, X. (2020). Feature refinement for
image-based driver action recognition via multi-scale
attention convolutional neural network. Signal
Processing: Image Communication, 81, 115697.
https://doi.org/10.1016/j.image.2019.115697
Hu, Y., Lu, M., Xie, C., & Lu, X. (2021). Video-based
driver action recognition via hybrid spatial–temporal
deep learning framework. Multimedia Systems, 27(3),
483-501. https://doi.org/10.1007/s00530-020-00724-y
Huang, D., Shan, C., Ardabilian, M., Wang, Y., & Chen, L.
(2011). Local binary patterns and its application to
facial image analysis: a survey. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 41(6), 765-781. DOI:
10.1109/TSMCC.2011.2118750
Jegham, I., Khalifa, A. B., Alouani, I., & Mahjoub, M. A.
(2020). Soft spatial attention-based multimodal driver
action recognition using deep learning. IEEE Sensors
Journal, 21(2), 1918-1925. doi: 10.1109/JSEN.
2020.3019258.
Jegham, I., Khalifa, A. B., Alouani, I., & Mahjoub, M. A.
(2020). A novel public dataset for multimodal
multiview and multispectral driver distraction analysis:
3MDAD. Signal Processing: Image Communication,
88, 115960. doi: 10.1016/j.image.2020.115960.
Knowledge Center, “Categorical crossentropy” 2022, last
accessed 1/08/2022. [Online]. Available: https://
peltarion.com/knowledge-center/documentation/mode
ling-view/build-an-ai-model/loss-functions/categorical
-crossentropy
Koesdwiady, A., Soua, R., Karray, F., & Kamel, M. S.
(2016). Recent trends in driver safety monitoring
systems: State of the art and challenges. IEEE
transactions on vehicular technology, 66(6), 4550-
4563. DOI: 10.1109/TVT.2016.2631604
Kong, Y., & Fu, Y. (2022). Human action recognition and
prediction: A survey. International Journal of Computer
Vision, 130(5), 1366-1401. DOI https://doi.org/10.
1007/s11263-022-01594-9
Kopuklu, O., Zheng, J., Xu, H., & Rigoll, G. (2021). Driver
anomaly detection: A dataset and contrastive learning
approach. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (pp.
91-100). https://doi.org/10.48550/arXiv.2009.14660
NSC, “The Most Dangerous Time to Drive”, 2022, last
accessed 26/08/2022 [Online]. Available: https://
www.nsc.org/road/safety-topics/driving-at-night.
Santana, A., & Colombini, E. (2021). Neural Attention
Models in Deep Learning: Survey and Taxonomy.
arXiv preprint arXiv:2112.05909. https://doi.org/
10.48550/arXiv.2112.05909
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., ... & Rabinovich, A. (2015). Going
deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition
(pp. 1-9). foundation.org/openaccess/content_cvpr_
2015/papers/Szegedy_Going_Deeper_With_2015_CV
PR_paper.pdf
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna,
Z. (2016). Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition
(pp. 2818-2826).
Tran, D., Manh Do, H., Sheng, W., Bai, H., & Chowdhary,
G. (2018). Real‐time detection of distracted driving
based on deep learning. IET Intelligent Transport
Systems, 12(10), 1210-1219. https://doi.org/10.1049/
iet-its.2018.5172
Ullah, A., Ahmad, J., Muhammad, K., Sajjad, M., & Baik,
S. W. (2017). Action recognition in video sequences
using deep bi-directional LSTM with CNN features.
IEEE access, 6, 1155-1166. DOI: 10.1109/
ACCESS.2017.2778011
Wang, K., Chen, X., & Gao, R. (2019, December).
Dangerous driving behavior detection with attention
mechanism. In Proceedings of the 3rd International
Conference on Video and Image Processing (pp. 57-
62). https://doi.org/10.1145/3376067.3376101
WHO, “Road traffic injuries,” 2022, last accessed
1/08/2022 [Online]. Available: https://www.who.int/
news-room/fact-sheets/detail/road-traffic-injuries.
Xing, Y., Lv, C., Wang, H., Cao, D., Velenis, E., & Wang,
F. Y. (2019). Driver activity recognition for intelligent
vehicles: A deep learning approach. IEEE transactions
on Vehicular Technology, 68(6), 5379-5390. DOI:
10.1109/TVT.2019.2908425