Bayati, M., Dahmoune, M., Fourneau, J., Pekergin, N., and
Vekris, D. (2016). A tool based on traffic traces and
stochastic monotonicity to analyze data centers and
their energy consumption. EAI Endorsed Trans. En-
ergy Web, 3(10):e3.
Bellman, R. (1957). Dynamic Programming. Princeton
University Press, Princeton, NJ, USA, 1 edition.
Benini, L., Bogliolo, A., Paleologo, G. A., and De Micheli,
G. (1999). Policy optimization for dynamic power
management. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 18(6):813–
833.
Benson, T., Akella, A., and Maltz, D. A. (2010). Network
traffic characteristics of data centers in the wild. In
Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement, pages 267–280. ACM.
Bertsekas, D. P. (1995). Dynamic programming and optimal
control, volume 1. Athena Scientific Belmont, MA.
Dyachuk, D. and Mazzucco, M. (2010). On allocation
policies for power and performance. In 2010 11th
IEEE/ACM International Conference on Grid Com-
puting, pages 313–320. IEEE.
Gebrehiwot, M. E., Aalto, S., and Lassila, P. (2016). Op-
timal energy-aware control policies for fifo servers.
Performance Evaluation, 103:41–59.
Greenberg, A. G., Hamilton, J. R., Maltz, D. A., and Patel,
P. (2009). The cost of a cloud: research problems in
data center networks. Computer Communication Re-
view, 39(1):68–73.
Grunwald, D., Morrey, III, C. B., Levis, P., Neufeld, M.,
and Farkas, K. I. (2000). Policies for dynamic clock
scheduling. In Proceedings of the 4th Conference on
Symposium on Operating System Design & Implemen-
tation - Volume 4, OSDI’00, pages 6–6, Berkeley, CA,
USA. USENIX Association.
Hipp, S. K. and Holzbaur, U. D. (1988). Decision pro-
cesses with monotone hysteretic policies. Operations
Research, 36(4):585–588.
Jin, Y., Wen, Y., and Chen, Q. (2012). Energy efficiency
and server virtualization in data centers: An empirical
investigation. In Computer Communications Work-
shops (INFOCOM WKSHPS), 2012 IEEE Conference
on, pages 133–138. IEEE.
Khan, W. (2022). Advanced data analytics modelling for
evidence-based data center energy management.
Koomey, J. (2011). Growth in data center electricity use
2005 to 2010. A report by Analytical Press, completed
at the request of The New York Times, page 9.
Lee, Y. C. and Zomaya, A. Y. (2012). Energy efficient uti-
lization of resources in cloud computing systems. The
Journal of Supercomputing, 60(2):268–280.
Lu, F. and Serfozo, R. F. (1984). M/m/1 queueing decision
processes with monotone hysteretic optimal policies.
Operations Research, 32(5):1116–1132.
Maccio, V. J. and Down, D. G. (2015). On optimal con-
trol for energy-aware queueing systems. In Teletraf-
fic Congress (ITC 27), 2015 27th International, pages
98–106. IEEE.
Mazzucco, M. and Dyachuk, D. (2012). Optimizing cloud
providers revenues via energy efficient server alloca-
tion. Sustainable Computing: Informatics and Sys-
tems, 2(1):1–12.
Mazzucco, M., Dyachuk, D., and Dikaiakos, M. (2010).
Profit-aware server allocation for green internet ser-
vices. In Modeling, Analysis & Simulation of Com-
puter and Telecommunication Systems (MASCOTS),
2010 IEEE International Symposium on, pages 277–
284. IEEE.
Mitrani, I. (2013). Managing performance and power con-
sumption in a server farm. Annals OR, 202(1):121–
134.
Patel, C. D., Bash, C. E., Sharma, R., and Beitelmal, M.
(2003). Smart cooling of data centers. In Proceedings
of IPACK.
Peng, X., Bhattacharya, T., Mao, J., Cao, T., Jiang, C., and
Qin, X. (2022). Energy-efficient management of data
centers using a renewable-aware scheduler. In 2022
IEEE International Conference on Networking, Archi-
tecture and Storage (NAS), pages 1–8. IEEE.
Plum, H.-J. (1991). Optimal monotone hysteretic markov
policies in anm/m/1 queueing model with switching
costs and finite time horizon. Mathematical Methods
of Operations Research, 35(5):377–399.
Puterman, M. L. (1994). Markov Decision Processes. J.
Wiley and Sons.
Rajesh, C., Dan, S., Steve, S., and Joe, T. (2008). Profiling
energy usage for efficient consumption. The Architec-
ture Journal, 18:24.
Rteil, N., Burdett, K., Clement, S., Wynne, A., and
Kenny, R. (2022). Balancing power and perfor-
mance: A multi-generational analysis of enterprise
server bios profiles. In 2022 International Conference
on Green Energy, Computing and Sustainable Tech-
nology (GECOST), pages 81–85. IEEE.
Schwartz, C., Pries, R., and Tran-Gia, P. (2012). A queuing
analysis of an energy-saving mechanism in data cen-
ters. In Information Networking (ICOIN), 2012 Inter-
national Conference on, pages 70–75.
Serfozo, R. F. (1979). Technical note—an equivalence be-
tween continuous and discrete time markov decision
processes. Operations Research, 27(3):616–620.
Tancrez, J.-S., Semal, P., and Chevalier, P. (2009). His-
togram based bounds and approximations for produc-
tion lines. European Journal of Operational Research,
197(3):1133–1141.
Topkis, D. M. (1978). Minimizing a submodular function
on a lattice. Operations research, 26(2):305–321.
Wilkes, J. (2011). More Google cluster data. Google re-
search blog. Posted at http://googleresearch.blogspot.
com/2011/11/more-google-cluster-data.html.
Yang, Z., Chen, M.-H., Niu, Z., and Huang, D. (2011).
An optimal hysteretic control policy for energy saving
in cloud computing. In Global Telecommunications
Conference, pages 1–5. IEEE.
Discrete-Time MDP Policy for Energy-Aware Data Center
97