Table 1: A sample test dataset containing preset and simulated activities from one agent in a 24 hour window. The activities
have physical and time constraints when and where they may be scheduled. Further, we identify that our requirements are
met in the generated activities, i.e. ordered set, exclusivity and chain of reasoning as described in Section 3.3.
Entry Sim. order Activity type Start Time End Time Start (lat, lon) End (lat, lon)
1 preset home 17:34:14 19:35:40 (48.18286, 11.52519) (48.18286, 11.52519)
2 restricted transport 19:35:40 19:35:40 (48.18286, 11.52519) (48.18286, 11.52519)
3 restricted sleep 19:35:40 02:53:24 (48.18286, 11.52519) (48.18286, 11.52519)
4 unrestricted transport 02:53:24 02:53:24 (48.18286, 11.52519) (48.18286, 11.52519)
5 unrestricted home 02:53:24 05:12:36 (48.18286, 11.52519) (48.18286, 11.52519)
6 unrestricted transport 05:12:36 05:13:59 (48.18286, 11.52519) (48.18469, 11.53327)
7 unrestricted walk 05:13:59 07:03:00 (48.18469, 11.53327) (48.18469, 11.53327)
8 unrestricted transport 07:03:00 07:08:47 (48.18469, 11.53327) (48.18418, 11.49277)
9 unrestricted walk 07:08:47 11:20:24 (48.18418, 11.49277) (48.18418, 11.49277)
10 unrestricted transport 11:20:24 11:25:34 (48.18418, 11.49277) (48.18286, 11.52519)
11 preset sleep 11:25:34 12:30:24 (48.18286, 11.52519) (48.18286, 11.52519)
12 unrestricted transport 12:30:24 12:34:36 (48.18286, 11.52519) (48.18005, 11.49265)
13 unrestricted shopping 12:34:36 13:15:54 (48.18005, 11.49265) (48.18005, 11.49265)
14 unrestricted transport 13:15:54 13:20:28 (48.18005, 11.49265) (48.18286, 11.52519)
15 preset home 13:20:28 17:16:49 (48.18286, 11.52519) (48.18286, 11.52519)
REFERENCES
Adnan, M., Pereira, F. C., Azevedo, C. M. L., Basak, K.,
Lovric, M., Raveau, S., Zhu, Y., Ferreira, J., Ze-
gras, C., and Ben-Akiva, M. (2015). Simmobility:
A multi-scale integrated agent-based simulation plat-
form. In 95
th
Annual Meeting of the Transportation
Research Board Forthcoming in Transportation Re-
search Record.
Al-Kuwari, S. and Wolthusen, S. (2010). Forensic track-
ing and mobility prediction in vehicular networks.
In Advances in Digital Forensics VI, pages 91–105.
Springer Berlin Heidelberg.
Aschenbruck, N., Munjal, A., and Camp, T. (2010). Trace-
based mobility modeling for multi-hop wireless net-
works. Computer Communications, 34(6):704–714.
Barbosa, H., Barthelemy, M., Ghoshal, G., James, C. R.,
Lenormand, M., Louail, T., Menezes, R., Ramasco,
J. J., Simini, F., and Tomasini, M. (2018). Human
mobility: Models and applications. Physics Reports,
734:1–74. Human mobility: Models and applications.
B
¨
osche, K., Sellam, T., Pirk, H., Beier, R., Mieth, P., and
Manegold, S. (2012). Scalable generation of synthetic
GPS traces with real-life data characteristics. In Tech-
nology Conference on Performance Evaluation and
Benchmarking, pages 140–155. Springer.
Castiglione, J., Bradley, M., and Gliebe, J. (2015). Activity-
Based Travel Demand Models: A Primer. The Na-
tional Academies Press, Washington, DC.
Drchal, J.,
ˇ
Certick
`
y, M., and Jakob, M. (2019). Data-driven
activity scheduler for agent-based mobility models.
Transportation Research Part C: Emerging Technolo-
gies, 98:370–390.
Ekman, F., Ker
¨
anen, A., Karvo, J., and Ott, J. (2008). Work-
ing Day Movement Model. In Proceedings of the
1
st
ACM SIGMOBILE workshop on Mobility models,
pages 33–40.
European Parliament and Council (2016). Regulation (eu)
2016/679. Official Journal of the European Union,
vol. 59(L 119):1–88.
Holmes, R. and Holmes, S. (2008). Profiling Violent
Crimes: An Investigative Tool. SAGE Publications.
Horni, A., Nagel, K., and Axhausen, K., editors (2016).
Multi-Agent Transport Simulation MATSim. Ubiquity
Press, London.
Lu, Y., Adnan, M., Basak, K., Pereira, F. C., Carrion, C.,
Saber, V. H., Loganathan, H., and Ben-Akiva, M. E.
(2015). Simmobility mid-term simulator: A state
of the art integrated agent based demand and supply
model. In 94
th
Annual Meeting of the Transportation
Research Board, Washington, DC.
Luca, M., Barlacchi, G., Lepri, B., and Pappalardo, L.
(2021). A survey on deep learning for human mo-
bility. ACM Computing Surveys, 55(1):1–44.
Open Street Map (2023). Open street maps. https://www.
openstreetmap.org/. Accessed: 2023-02-10.
Salvini, P. and Miller, E. J. (2005). ILUTE: An operational
prototype of a comprehensive microsimulation model
of urban systems. Networks and Spatial Economics,
5(2):217–234.
Solmaz, G. and Turgut, D. (2019). A survey of human mo-
bility models. IEEE Access, 7:125711–125731.
Song, Y., Li, D., Cao, Q., Yang, M., and Ren, G. (2021).
The whole day path planning problem incorporating
mode chains modeling in the era of mobility as a
service. Transportation Research Part C: Emerging
Technologies, 132:103360.
Zheng, H., Son, Y.-J., Chiu, Y.-C., Head, L., Feng, Y., Xi,
H., Kim, S., and Hickman, M. (2013). A Primer for
Agent-Based Simulation and Modeling in Transporta-
tion Applications. Technical report, Federal Highway
Administration.
VEHITS 2023 - 9th International Conference on Vehicle Technology and Intelligent Transport Systems
288