Figure 3: Temporal intensity score variation of coronary angiogram frames.
reports, 11(1):1–13.
Frangi, A. F., Niessen, W. J., Vincken, K. L., and Viergever,
M. A. (1998). Multiscale vessel enhancement filter-
ing. In International conference on medical image
computing and computer-assisted intervention, pages
130–137. Springer.
Gawande, U., Hajari, K., and Golhar, Y. (2020). Deep learn-
ing approach to key frame detection in human action
videos. Recent Trends in Computational Intelligence,
1:1–17.
Jiang, Z.-g. and Shi, X.-t. (2021). Application research of
key frames extraction technology combined with opti-
mized faster r-cnn algorithm in traffic video analysis.
Complexity, 2021.
Jo, K., Kweon, J., Kim, Y.-H., and Choi, J. (2018). Segmen-
tation of the main vessel of the left anterior descend-
ing artery using selective feature mapping in coronary
angiography. IEEE Access, 7:919–930.
Kavipriya, K. and Hiremath, M. (2022). Computational
method to extract the keyframe from angiogram
video. JOURNAL OF ALGEBRAIC STATISTICS,
13(3):3088–3097.
Kerkeni, A., Benabdallah, A., Manzanera, A., and Bedoui,
M. H. (2016). A coronary artery segmentation method
based on multiscale analysis and region growing.
Computerized Medical Imaging and Graphics, 48:49–
61.
Lamy, J., Merveille, O., Kerautret, B., Passat, N., and
Vacavant, A. (2021). Vesselness filters: A survey
with benchmarks applied to liver imaging. In 2020
25th International Conference on Pattern Recognition
(ICPR), pages 3528–3535. IEEE.
Lee, Y.-T. H., Fang, J., Schieb, L., Park, S., Casper, M., and
Gillespie, C. (2022). Prevalence and trends of coro-
nary heart disease in the united states, 2011 to 2018.
JAMA cardiology, 7(4):459–462.
Meijering, E., Jacob, M., Sarria, J.-C., Steiner, P., Hirling,
H., and Unser, e. M. (2004). Design and validation of
a tool for neurite tracing and analysis in fluorescence
microscopy images. Cytometry Part A: the journal
of the International Society for Analytical Cytology,
58(2):167–176.
Moon, J. H., Cha, W. C., Chung, M. J., Lee, K.-S., Cho,
B. H., Choi, J. H., et al. (2021). Automatic stenosis
recognition from coronary angiography using convo-
lutional neural networks. Computer methods and pro-
grams in biomedicine, 198:105819.
Neumann, F.-J., Sousa-Uva, M., Ahlsson, A., Alfonso, F.,
Banning, A. P., Benedetto, U., Byrne, R. A., Collet,
J.-P., Falk, V., Head, S. J., et al. (2019). 2018 esc/eacts
guidelines on myocardial revascularization. European
heart journal, 40(2):87–165.
Obara, B., Fricker, M., Gavaghan, D., and Grau, V. (2012).
Contrast-independent curvilinear structure detection
in biomedical images. IEEE Transactions on Image
Processing, 21(5):2572–2581.
Ojha, N. and Dhamoon, A. S. (2021). Myocardial infarc-
tion. In StatPearls [Internet]. StatPearls Publishing.
Qin, B., Mao, H., Liu, Y., Zhao, J., Lv, Y., Zhu, Y., Ding,
S., and Chen, X. (2022). Robust pca unrolling net-
work for super-resolution vessel extraction in x-ray
coronary angiography. IEEE Transactions on Medi-
cal Imaging.
Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S.,
Koller, T., Gerig, G., and Kikinis, R. (1998). Three-
dimensional multi-scale line filter for segmentation
and visualization of curvilinear structures in medical
images. Medical image analysis, 2(2):143–168.
Sazak, C¸ ., Nelson, C. J., and Obara, B. (2019). The multi-
scale bowler-hat transform for blood vessel enhance-
ment in retinal images. Pattern Recognition, 88:739–
750.
ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods
588