formers for language understanding. In in Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), Association for Computa-
tional Linguistics, Minneapolis, Minnesota, 2019, pp.
4171–4186. URL: https://aclanthology.org/N19-1423
. doi: 10.18653/v1/N19-1423.
Fortuna, P. and Nunes, S. (2018). A survey on auto-
matic detection of hate speech in text. In ACM
Computing Surveys (CSUR) volume 51, 2018, pp.
85:1–85:30. URL: https://doi.org/10.1145/3232676 .
doi: 10.1145/3232676.
Frenda, S., Ghanem, B., y G
´
omez, M. M., and Rosso,
P. (2019). Online hate speech against women:
Automatic identification of misogyny and sexism
on twitter. In volume 36, 2019, pp. 4743–4752.
URL: https://doi.org/10.3233/JIFS-179023 . doi:
10.3233/JIFS-179023.
Grave, E., Bojanowski, P., Gupta, P., Joulin, A., and
Mikolov, T. (2018). Learning word vectors for
157 languages. In in: Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation, LREC 2018, Miyazaki, Japan,
May 7-12, 2018, European Language Resources
Association (ELRA), 2018. URL:http://www.lrec-
conf.org/proceedings/lrec2018/summaries/627.html.
Grimminger, L. and Klinger, R. (2021). Hate towards
the political opponent: A twitter corpus study of the
2020 us elections on the basis of offensive speech and
stance detection. In In Proceedings of the Eleventh
Workshop on Computational Approaches to Subjec-
tivity, Sentiment and Social Media Analysis, pages
171–180, Online. Association for Computational Lin-
guistics.
Hartmann, N., Fonseca, E. R., Shulby, C., Treviso,
M. V., Rodrigues, J. S., and Alu
´
ısio, S. M.
(2017). Portuguese word embeddings: Evaluating
on word analogies and natural language tasks. In
in: G. H. Paetzold, V. Pinheiro (Eds.), Proceed-
ings of the 11th Brazilian Symposium in Informa-
tion and Human Language Technology, STIL 2017,
Uberl
ˆ
andia, Brazil, October 2-5, 2017, Sociedade
Brasileira de Computac¸
˜
ao, 2017, pp. 122–131. URL:
https://aclanthology.org/W17-6615/.
Hewitt, S., Tiropanis, T., and Bokhove, C. (2016). The
problem of identifying misogynist language on twit-
ter (and other online social spaces). In in: Proceed-
ings of the 8th ACM Conference on Web Science, pp.
333–335.
Karim, M. R., Dey, S. K., Islam, T., Sarker, S., Menon,
M. H., Hossain, K., Hossain, M. A., and Decker,
S. (2021). Deephateexplainer: Explainable hate
speech detection in under-resourced bengali lan-
guage. In in: 2021 IEEE 8th International
Conference on Data Science and Advanced An-
alytics (DSAA), IEEE, 2021, pp. 1–10. URL:
https://doi.org/10.1109/DSAA53316.2021.9564230.
doi: 10.1109/DSAA53316.2021.9564230.
Lample, G., Conneau, A., Ranzato, M., Denoyer, L.,
and J
´
egou, H. (2018). Word translation with-
out parallel data. In in: International Con-
ference on Learning Representations, 2018. URL:
https://openreview.net/forum?id=H196sainb.
L
´
opez-Vizca
´
ıno, M. F., N
´
ovoa, F. J., Carneiro, V., and
Cacheda, F. (2021). Early detection of cyberbullying
on social media networks. In Future Generation Com-
puter Systems (118), pp. 219-229.
Mathew, B., Dutt, R., Goyal, P., and Mukherjee, A. (2019).
Spread of hate speech in online social media. In in
Proceedings of the 10th ACM conference on web sci-
ence, pp. 173–182.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013).
Efficient estimation of word representations in vec-
tor space. In in: Y. Bengio, Y. LeCun (Eds.), 1st
International Conference on Learning Representa-
tions, ICLR 2013, Scottsdale, Arizona, USA, May 2-
4, 2013, Workshop Track Proceedings, 2013. URL:
http://arxiv.org/abs/1301.3781.
Mladenovic, M., Osmjanski, V., and Stankovic, S. V.
(2021). Cyber-aggression, cyberbullying, and cyber-
grooming: A survey and research challenges. In ACM
Computing Surveys 54 (2021) 1:1–1:42.
Mondal, M., Silva, L., Correa, D., and Benevenuto, F.
(2018). Characterizing usage of explicit hate expres-
sions in social media. In New Review of Hypermedia
and Multimedia 24, 110–130.
Pamungkas, E. W., Basile, V., and Patti, V. (2021).
A joint learning approach with knowledge in-
jection for zero-shot cross-lingual hate speech
detection. In volume 58, 2021, p. 102544. URL:
https://www.sciencedirect.com/science/article/pii/S03
06457321000510. doi: https://doi.org/10.1016/j.ipm.
2021.102544.
Pamungkas, E. W. and Patti, V. (2019). Cross-domain
and cross-lingual abusive language detection: A hy-
brid approach with deep learning and a multilin-
gual lexicon. In in F. Alva-Manchego, E. Choi, D.
Khashabi (Eds.), Proceedings of the 57th Conference
of the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28 - August 2, 2019, Vol-
ume 2: Student Research Workshop, Association for
Computational Linguistics, 2019, pp. 363–370. URL:
https://doi.org/10.18653/v1/p19-2051.
Peters, M. E., Neumann, M., Zettlemoyer, L., and Yih,
W. (2018). Dissecting contextual word embed-
dings: Architecture and representation. In in E.
Riloff, D. Chiang, J. Hockenmaier, J. Tsujii (Eds.),
Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, Brus-
sels, Belgium, October 31 - November 4, 2018, As-
sociation for Computational Linguistics, 2018, pp.
1499–1509. URL: https://doi.org/10.18653/v1/d18-
1179 . doi: 10.18653/v1/d18-1179.
Pikuliak, M., Simko, M., and Bielikov
´
a, M. (2021).
Cross-lingual learning for text processing: A
survey. In volume 165, 2021, p. 113765. URL:
https://doi.org/10.1016/j.eswa.2020.113765.
doi:10.1016/j.eswa.2020.113765.
Schweter, S. (2020). Italian bert and electra models. In
2020. URL: https://doi.org/10.5281/zenodo.4263142.
doi: 10.5281/zenodo.4263142.
Using Multilingual Approach in Cross-Lingual Transfer Learning to Improve Hate Speech Detection
383