social networks analysis, news, and information that
influence people’s desire to buy, for instance. In fact,
this assessment intends to identify and model other
external influences, which were not addressed in this
study, to which the currency is subject.
Combining a qualitative approach to external in-
fluences, such as example, Twitter sentiment analysis,
and a quantitative approach based on the series’ own
values may be the most appropriate way to conduct
the research. Furthermore, these valuations can be a
promising study for currency forecasting.
ACKNOWLEDGEMENTS
This work was partially supported by the Brazilian re-
search funding agencies CNPq (305805/2021-5) and
FAPERGS (Programa de Apoio
`
a Fixac¸
˜
ao de Jovens
Doutores no Brasil - 23/2551-0000126-8).
REFERENCES
Abdel-Nasser, M. and Mahmoud, K. (2019). Accurate pho-
tovoltaic power forecasting models using deep lstm-
rnn. Neural Computing and Applications.
Affonso, F., Dias, T. M. R., and Pinto, A. L. (2021). Finan-
cial times series forecasting of clustered stocks. Mo-
bile Networks and Applications, 26(1):256–265.
Brownlee, J. (2016). How to grid search hyperparameters
for deep learning models in python with keras. l
´
ınea].
Disponible en: https://machinelearningmastery.
com/grid-search-hyperparameters-deep-learning-
models-python-keras.
Buterin, V. et al. (2013). Ethereum white paper. GitHub
repository, 1:22–23.
Castello, M. G. (2019). Bitcoin
´
e moeda? classificac¸
˜
ao das
criptomoedas para o direito tribut
´
ario. Revista Direito
GV, 15.
Chu, J., Nadarajah, S., and Chan, S. (2015). Statistical
analysis of the exchange rate of bitcoin. PloS one,
10(7):e0133678.
Dalmazo, B. L., Vilela, J. P., and Curado, M. (2018). Triple-
similarity mechanism for alarm management in the
cloud. Computers & Security, 78:33–42.
Deng, L. and Yu, D. (2014). Deep learning: methods and
applications. Foundations and trends in signal pro-
cessing.
Ehlers, R. S. (2007). An
´
alise de s
´
eries temporais. Labo-
rat
´
orio de Estat
´
ıstica e Geoinformac¸
˜
ao. Universidade
Federal do Paran
´
a, 1:1–118.
Gulli, A. and Pal, S. (2017). Deep learning with Keras.
Packt Publishing Ltd.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Hughes, S. D. (2017). Cryptocurrency regulations and en-
forcement in the us. W. St. UL Rev., 45:1.
Hunter, J. D. (2007). Matplotlib: A 2d graphics environ-
ment. Computing in science & engineering, 9(03):90–
95.
Mallqui, D. C. and Fernandes, R. A. (2019). Predicting
the direction, maximum, minimum and closing prices
of daily bitcoin exchange rate using machine learning
techniques. Applied Soft Computing, 75:596–606.
McCulloch, W. S. and Pitts, W. (1943). A logical calculus
of the ideas immanent in nervous activity. The bulletin
of mathematical biophysics, 5(4):115–133.
Miura, R., Pichl, L., and Kaizoji, T. (2019). Artificial neu-
ral networks for realized volatility prediction in cryp-
tocurrency time series. In International Symposium on
Neural Networks, pages 165–172. Springer.
Morettin, P. A. (2017). Econometria financeira: um curso
em s
´
eries temporais financeiras. Editora Blucher.
Mukhopadhyay, Ujan, e. a. (2016). A brief survey of cryp-
tocurrency systems. 14th annual conference on pri-
vacy, security and trust (PST), IEEE.
Nakamoto, S. (2008). A peer-to-peer electronic cash sys-
tem. Bitcoin.–URL: https://bitcoin. org/bitcoin. pdf.
Nofer, Michael, e. a. (2017). Blockchain. Business & In-
formation Systems Engineering.
Simsion, G. and Witt, G. (2004). Data modeling essentials.
Elsevier.
Sun, Lei, e. a. (2017). Multiple-target deep learning
for lstm-rnn based speech enhancement. Hands-
free Speech Communications and Microphone Arrays
(HSCMA), IEEE.
Tanenbaum, A. S. and Zucchi, W. L. (2009). Organizac¸
˜
ao
estruturada de computadores. Pearson Prentice Hall.
Tsai, Y.-T., Zeng, Y.-R., and Chang, Y.-S. (2018). Air pollu-
tion forecasting using rnn with lstm. 16th Intl Conf on
Dependable, Autonomic and Secure Computing, 16th
Intl Conf on Pervasive Intelligence and Computing,
4th Intl Conf on Big Data Intelligence and Computing
and Cyber Science and Technology Congress, IEEE.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson,
P., Weckesser, W., Bright, J., et al. (2020). Scipy
1.0: fundamental algorithms for scientific computing
in python. Nature methods, 17(3):261–272.
Zoumpekas, T., Houstis, E., and Vavalis, M. (2020). Eth
analysis and predictions utilizing deep learning. Ex-
pert Systems with Applications, 162:113866.
ICEIS 2023 - 25th International Conference on Enterprise Information Systems
186