Since BOMULAP is NP-hard, developing heuristic
methods, such as Non-dominated Sorting Genetic Al-
gorithm II (NSGA-II) (Deb et al., 2002), to deal with
large instances of the problem is another suggestion.
ACKNOWLEDGMENTS
The authors are grateful for the support provided
by the Universidade Federal de Ouro Preto, the
Coordenac¸
˜
ao de Aperfeic¸oamento de Pessoal de
N
´
ıvel Superior - Brazil (CAPES) - Finance Code 001,
CNPq (grants 428817/2018-1, 303266/2019-8, and
307853/2021-7), and FAPEMIG (grant PPM CEX
676/17).
REFERENCES
Amaral, P., Luz, L., Cardoso, F., and Freitas, R. (2017).
Distribuic¸
˜
ao espacial de equipamentos de mamografia
no Brasil. Revista Brasileira de Estudos Urbanos
e Regionais (RBEUR), 19(2):326–341. Available at
https://doi.org/10.22296/2317-1529.2017v19n2p326.
Beheshtifar, S. and Alimoahmmadi, A. (2015). A multiob-
jective optimization approach for location-allocation
of clinics. International Transactions in Operational
Research, 22(2):313–328. Available at https://doi.org/
10.1111/itor.12088.
Brasil (2017). Crit
´
erios e par
ˆ
ametros assistenciais para o
planejamento e programac¸
˜
ao de ac¸
˜
oes e servic¸os de
sa
´
ude no
ˆ
ambito do Sistema
´
Unico de Sa
´
ude. Mi-
nist
´
erio da Sa
´
ude, Secretaria de Atenc¸
˜
ao
`
a Sa
´
ude, De-
partamento de Regulac¸
˜
ao, Avaliac¸
˜
ao e Controle de
Sistemas. Available at https://bit.ly/3KSHSDb. Ac-
cessed on March 11, 2022.
Church, R. and ReVelle, C. (1974). The maximal cover-
ing location problem. Papers of the Regional Sci-
ence Association, 32(1):101–118. Available at https:
//doi.org/10.1007/BF01942293.
Corr
ˆ
ea, V. H. V., Lima, B. J. C., Silva-e-Souza, P. H., Penna,
P. H. V., and Souza, M. J. F. (2018). Localizac¸
˜
ao
de mam
´
ografos: um estudo de caso na rede p
´
ublica
de sa
´
ude. In Anais do L Simp
´
osio Brasileiro de
Pesquisa Operacional (SBPO), volume 50, Rio de
Janeiro, Brazil. SOBRAPO, Galo
´
a. Available at https:
//bityli.com/zRVOJoYRw. Accessed on August 31,
2022.
DATASUS (2021). CNES - recursos f
´
ısicos. Available at
datasus.saude.gov.br/cnes-recursos-fisicos. Accessed
on November 22, 2022.
de Assis, R. S. L., de Campos, M. V. A., Souza, M. J. F.,
Silva, M. A. L., de Siqueira, E. C., and de Souza,
S. R. (2022). Um algoritmo variable neighborhood
search para o problema de localizac¸
˜
ao de mam
´
ografos
com atendimento parcial. In Anais do LIV Simp
´
osio
Brasileiro de Pesquisa Operacional, volume 54, page
152748. Juiz de Fora, Brazil. Available at encr.pw/
GpO7B. Accessed on November 25, 2022.
de Campos, M. V., de S
´
a, M. V. S. M., Rosa, P. M.,
Penna, P. H. V., de Souza, S. R., and Souza, M.
J. F. (2020). A mixed linear integer programming
formulation and a simulated annealing algorithm for
the mammography unit location problem. In Pro-
ceedings of the 22nd International Conference on En-
terprise Information Systems, pages 428–439, Online
Streaming. Scitepress Digital Library: Set
´
ubal, Por-
tugal. Available at https://www.scitepress.org/Papers/
2020/94207/94207.pdf. Accessed on November 18,
2022.
de Freitas Almeida, J. F., Conceic¸
˜
ao, S. V., and Magalh
˜
aes,
V. S. (2022). An optimization model for equitable
accessibility to magnetic resonance imaging technol-
ogy in developing countries. Decision Analytics Jour-
nal, 4:100105. Available at https://doi.org/10.1016/j.
dajour.2022.100105.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Com-
putation, 6(2):182–197. Available at https://doi.org/
10.1109/4235.996017.
Festa, P. and Resende, M. G. C. (2018). Grasp. In
Mart
´
ı, R., Pardalos, P. M., and Resende, M. G. C.,
editors, Handbook of Heuristics, chapter 16, pages
465–488. Springer, Cham, Switzerland. Avail-
able at https://link.springer.com/referenceworkentry/
10.1007/978-3-319-07124-4 23.
Hansen, P., Mladenovi
´
c, N., Todosijevi
´
c, R., and Hanafi,
S. (2017). Variable neighborhood search: basics and
variants. EURO Journal on Computational Optimiza-
tion, 5(3):423–454. Available at https://doi.org/10.
1007/s13675-016-0075-x.
INCA (2019). Estimativa 2020: incid
ˆ
encia do c
ˆ
ancer no
Brasil. Instituto Nacional de C
ˆ
ancer Jos
´
e Alencar
Gomes da Silva (INCA). Available at acesse.one/
Z4aKx. Accessed on October 15, 2022.
INCA (2022). Atlas da mortalidade. Instituto Nacional de
C
ˆ
ancer Jos
´
e Alencar Gomes da Silva (INCA). Avail-
able at https://www.inca.gov.br/app/mortalidade. Ac-
cessed on October 15, 2022.
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.
(1983). Optimization by simulated annealing. Sci-
ence, 220(4598):671–680. Available at https://www.
science.org/doi/10.1126/science.220.4598.671.
Lemesre, J., Dhaenens, C., and Talbi, E. (2007). Paral-
lel portioning method (ppm): A new exact method
to solve bi-objective problems. Computers & Oper-
ations Research, 34:2450–2462. Available at https:
//doi.org/10.1016/j.cor.2005.09.014.
Miranda, S. and Patrocinio, A. (2018). Distribuic¸
˜
ao de
mam
´
ografos por macrorregi
˜
ao do brasil. In Anais do
V Congresso Brasileiro de Eletromiografia e Cinesi-
ologia e X Simp
´
osio de Engenharia Biom
´
edica, page
433–436. Uberl
ˆ
andia, Brazil. Available at l1nq.com/
Ly7fu. Accessed on October 15, 2022.
PAHO (2020). Cancer. Pan American Health Organization
(PAHO). Available at https://www.paho.org/en/topics/
cancer. Accessed on October 15, 2022.
Mammography Unit Location: Reconciling Maximum Coverage and Budgetary Constraints
193