the current solution, each frame is rendered as is but
instead we could cumulate the point clouds from mul-
tiple frames for creating a more complete geometry.
However, since the boat is not steady, we would need
its position and orientation to place the data in a com-
mon reference system, that is, to compensate for the
motion and rotation. This information could be ob-
tained by using an IMU sensor, which unfortunately
was not available at this time.
ACKNOWLEDGEMENTS
This work was supported by the project NAUSICAA
- NAUtical Safety by means of Integrated Computer-
Assisted Appliances 4.0 (DIT.AD004.136)
REFERENCES
An, P., Ma, T., Yu, K., Fang, B., Zhang, J., Fu, W., and Ma,
J. (2020). Geometric calibration for lidar-camera sys-
tem fusing 3d-2d and 3d-3d point correspondences.
Opt. Express, 28(2):2122–2141.
Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P.,
Guennebaud, G., Levine, J. A., Sharf, A., and Silva,
C. T. (2017). A survey of surface reconstruction from
point clouds. In Computer Graphics Forum, vol-
ume 36, pages 301–329. Wiley Online Library.
Brinkmann, M. and Hahn, A. (2017). Testbed architecture
for maritime cyber physical systems. In 2017 IEEE
15th International Conference on Industrial Informat-
ics (INDIN), pages 923–928.
Bu, Z., Sun, C., Wang, P., and Dong, H. (2021). Calibra-
tion of camera and flash lidar system with a triangular
pyramid target. Applied Sciences, 11(2).
Callieri, M., Cignoni, P., Corsini, M., and Scopigno, R.
(2008). Masked photo blending: mapping dense pho-
tographic dataset on high-resolution 3d models. Com-
puter & Graphics, 32(4):464–473. for the online ver-
sion: http://dx.doi.org/10.1016/j.cag.2008.05.004.
Corsini, M., Cignoni, P., and Scopigno, R. (2012). Efficient
and flexible sampling with blue noise properties of tri-
angular meshes. IEEE Transactions on Visualization
and Computer Graphics, 18(6):914–924.
dspace (2021). https://www.dspace.com/en/pub/home/
applicationfields/stories/smartkai-parking-assistance-
f.cfm.
Garrido-Jurado, S., Mu
˜
noz-Salinas, R., Madrid-Cuevas, F.,
and Mar
´
ın-Jim
´
enez, M. (2014). Automatic generation
and detection of highly reliable fiducial markers under
occlusion. Pattern Recognition, 47(6):2280–2292.
Hahn, T., Damerius, R., Rethfeldt, C., Schubert, A. U.,
Kurowski, M., and Jeinsch, T. (2022). Automated
maneuvering using model-based control as key to au-
tonomous shipping. at - Automatisierungstechnik,
70(5):456–468.
ImagingSource (2017). https://www.theimagingsource.
com.
Kim, H., Kim, D., Park, B., and Lee, S.-M. (2020). Arti-
ficial intelligence vision-based monitoring system for
ship berthing. IEEE Access, 8:227014–227023.
Li, Q., Queralta, J. P. n., Gia, T. N., Zou, Z., and West-
erlund, T. (2020). Multi-sensor fusion for navigation
and mapping in autonomous vehicles: Accurate local-
ization in urban environments. Unmanned Systems,
08(03):229–237.
Li, X., He, F., Li, S., Zhou, Y., Xia, C., and Wang, X.
(2022). Accurate and automatic extrinsic calibration
for a monocular camera and heterogenous 3d lidars.
IEEE Sensors Journal, 22(16):16472–16480.
Martelli, M., Virdis, A., Gotta, A., Cassar
`
a, P., and
Di Summa, M. (2021). An outlook on the future ma-
rine traffic management system for autonomous ships.
IEEE Access, 9:157316–157328.
NVidia (2001). https://www.nvidia.com/en-us/drivers/
Projective-Texture-Mapping/.
Nvidia (2017). Nvidia announces jetson tx2: Parker comes
to nvidia’s embedded system kit.
Paneque, J., Valseca, V., Mart
´
ınez-de Dios, J. R., and
Ollero, A. (2022). Autonomous reactive lidar-based
mapping for powerline inspection. In 2022 Inter-
national Conference on Unmanned Aircraft Systems
(ICUAS), pages 962–971.
Park, Y., Yun, S., Won, C. S., Cho, K., Um, K., and Sim, S.
(2014). Calibration between color camera and 3d lidar
instruments with a polygonal planar board. Sensors,
14(3):5333–5353.
Perera, L., Moreira, L., Santos, F., Ferrari, V., Sutulo, S.,
and Soares, C. G. (2012). A navigation and control
platform for real-time manoeuvring of autonomous
ship models. IFAC Proceedings Volumes, 45(27):465–
470. 9th IFAC Conference on Manoeuvring and Con-
trol of Marine Craft.
Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R.,
Geselowitz, A., Greer, T., ter Haar Romeny, B., Zim-
merman, J. B., and Zuiderveld, K. (1987). Adaptive
histogram equalization and its variations. Computer
vision, graphics, and image processing, 39(3):355–
368.
R
¨
ussmeier, N., Hahn, A., Nicklas, D., and Zielinski, O.
(2016). Ad-hoc situational awareness by optical sen-
sors in a research port maritime environment , ap-
proved networking and sensor fusion technologies.
Schiaretti, M., Chen, L., and Negenborn, R. R. (2017). Sur-
vey on autonomous surface vessels: Part i - a new de-
tailed definition of autonomy levels. In Bektas¸, T.,
Coniglio, S., Martinez-Sykora, A., and Voß, S., edi-
tors, Computational Logistics, pages 219–233, Cham.
Springer International Publishing.
Schubert, A. U., Kurowski, M., Gluch, M., Simanski, and
O Jeinsch, T. (2018). Manoeuvring automation to-
wards autonomous shipping. Zenodo.
Snyder, F. D., Morris, D. D., Haley, P. H., Collins, R. T.,
and Okerholm, A. M. (2004). Autonomous river nav-
igation. In SPIE Optics East.
GISTAM 2023 - 9th International Conference on Geographical Information Systems Theory, Applications and Management
182