efficient with a large number of features and training
our proposed deep learning model on more dynamic
adaptation cases that can be triggered at runtime.
REFERENCES
Google colab. https://colab.research.google.com/. Ac-
cessed: 2022-05-15.
nlpaug. https://github.com/makcedward/nlpaug. Accessed:
2022-05-15.
Roberta. https://huggingface.co/roberta-base. Accessed:
2022-05-15.
Bagheri, E., Asadi, M., Gasevic, D., and Soltani, S. (2010a).
Stratified analytic hierarchy process: Prioritization
and selection of software features. In Bosch, J. and
Lee, J., editors, Software Product Lines: Going Be-
yond, pages 300–315, Berlin, Heidelberg. Springer
Berlin Heidelberg.
Bagheri, E., Di Noia, T., Ragone, A., and Gasevic, D.
(2010b). Configuring software product line feature
models based on stakeholders’ soft and hard require-
ments. In Proceedings of the 14th International Con-
ference on Software Product Lines: Going Beyond,
SPLC’10, page 16–31, Berlin, Heidelberg. Springer-
Verlag.
Bashari, M., Bagheri, E., and W.Du (2017). Dynamic soft-
ware product line engineering: A reference frame-
work. International Journal of Software Engineering
and Knowledge Engineering, pages 191–234.
Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortes, A., and
Hinchey, M. (2014). Overview of dynamic software
product line architectures and techniques:observations
from research and industry. The Journal of Systems
and Software, pages 3–23.
Czarnecki, K., Gr
¨
unbacher, P., Schmid, R. R. K., and
Wasowski, A. (2012). Cool features and tough
decisions:a comparison of variability modeling ap-
proaches. In Proceedings of the 6th Interna-
tional Workshop onVariability Modelling of Software-
Intensive Systems (VaMoS’12), pages 173–182. ACM.
Jonathan, Y., James, T., and Audrey, T. (2005). Evaluat-
ing ontology criteria for requirements in a geographic
travel domain. In Meersman, Robert, Tari, and Za-
hir, editors, On the Move to Meaningful Internet Sys-
tems 2005: CoopIS, DOA, and ODBASE, pages 1517–
1534, Berlin, Heidelberg. Springer Berlin Heidelberg.
Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson,
A. (1990). Feature-oriented domain analysis (foda)
feasibility study. Rep. CMU/SEI-, 90.
Katarya, R. and Arora, Y. (2020). Capsmf: a novel product
recommender system using deep learning based text
analysis model. Multimedia Tools and Applications,
pages 1–22.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692.
Maalaoui, N., Beltaifa, R., and Labed Jilani, L. (2022). De-
riving service-oriented dynamic product lines knowl-
edge from informal user-requirements: Ai based ap-
proach. pages 58–68. ICSEA 2022.
Maalaoui, N., Beltaifa, R., Labed Jilani, L., and Mazo, R.
(2021). An ontology for service-oriented dynamic
software product lines knowledge management. In
ENASE.
Martinez, J., Rossi, G., Ziadi, T., Bissyand
´
e, T. F. D. A.,
Klein, J., and Le Traon, Y. (2015a). Estimating and
predicting average likability on computer-generated
artwork variants. In Proceedings of the Companion
Publication of the 2015 Annual Conference on Ge-
netic and Evolutionary Computation, GECCO Com-
panion ’15, page 1431–1432, New York, NY, USA.
Association for Computing Machinery.
Martinez, J., Rossi, G., Ziadi, T., Bissyand
´
e, T. F. D. A.,
Klein, J., and Le Traon, Y. (2015b). Estimating and
predicting average likability on computer-generated
artwork variants. In Proceedings of the Companion
Publication of the 2015 Annual Conference on Ge-
netic and Evolutionary Computation, GECCO Com-
panion ’15, page 1431–1432, New York, NY, USA.
Association for Computing Machinery.
Mazo, R., Dumitrescu, C., Salinesi, C., and Diaz, D. (2014).
Recommendation Heuristics for Improving Product
Line Configuration Processes. In M, R., W., M., R.,
W., and T., Z., editors, Recommendation Systems in
Software Engineering, page 100. Springer.
Murukannaiah, P. K., Ajmeri, N., and Singh, M. P. (2016).
Acquiring creative requirements from the crowd: Un-
derstanding the influences of personality and creative
potential in crowd re. 2016 IEEE 24th International
Requirements Engineering Conference (RE), pages
176–185.
Pereira, J. A., Matuszyk, P., Krieter, S., Spiliopoulou, M.,
and Saake, G. (2016). A feature-based personalized
recommender system for product-line configuration.
SIGPLAN Not., 52(3):120–131.
Ripon, S., Rasel, F. S., Howlader, R. K., and Islam,
M. (2020). Automated Requirements Extraction and
Product Configuration Verification for Software Prod-
uct Line, pages 27–51. Springer Singapore, Singa-
pore.
Sengar, N., Singh, A., and Yadav, V. (2021). Classifica-
tion of documents using bidirectional long short-term
memory recurrent neural network. In Reddy, V. S.,
Prasad, V. K., Wang, J., and Reddy, K. T. V., editors,
Soft Computing and Signal Processing, pages 149–
156, Singapore. Springer Singapore.
ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering
148